Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

D2R striatopallidal neurons inhibit both locomotor and drug reward processes

Abstract

The specific functions of dopamine D2 receptor–positive (D2R) striatopallidal neurons remain poorly understood. Using a genetic mouse model, we found that ablation of D2R neurons in the entire striatum induced hyperlocomotion, whereas ablation in the ventral striatum increased amphetamine conditioned place preference. Thus D2R striatopallidal neurons limit both locomotion and, unexpectedly, drug reinforcement.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of D2R striatopallidal neuron ablation after full striatum unilateral diphtheria toxin injections in DTR-positive mice (coronal sections, level +1.2 mm relative to bregma).
Figure 2: Behavioral consequences of D2R striatopallidal neuron removal and quantification of the D2R striatopallidal neuron ablation.

References

  1. Graybiel, A.M. Curr. Biol. 10, 509–511 (2000).

    Article  Google Scholar 

  2. Hyman, S.E., Malenka, R.C. & Nestler, E.J. Annu. Rev. Neurosci. 29, 565–598 (2006).

    Article  CAS  Google Scholar 

  3. Everitt, B.J. & Robbins, T.W. Nat. Neurosci. 8, 1481–1489 (2005).

    Article  CAS  Google Scholar 

  4. Albin, R.L., Young, A.B. & Penney, J.B. Trends Neurosci. 12, 366–375 (1989).

    Article  CAS  Google Scholar 

  5. Gerfen, C.R. et al. Science 250, 1429–1432 (1990).

    Article  CAS  Google Scholar 

  6. Gong, S. et al. Nature 425, 917–925 (2003).

    Article  CAS  Google Scholar 

  7. Lobo, M.K., Karsten, S.L., Gray, M., Geschwind, D.H. & Yang, X.W. Nat. Neurosci. 9, 443–452 (2006).

    Article  CAS  Google Scholar 

  8. Shen, W. et al. Nat. Neurosci. 10, 1458–1466 (2007).

    Article  CAS  Google Scholar 

  9. Kreitzer, A.C. & Malenka, R.C. Nature 445, 643–647 (2007).

    Article  CAS  Google Scholar 

  10. Bertran–Gonzalez, J. J. Neurosci. 28, 5671–5685 (2008).

    Article  Google Scholar 

  11. Buch, T. et al. Nat. Methods 2, 419–426 (2005).

    Article  CAS  Google Scholar 

  12. Schiffmann, S.N. & Vanderhaeghen, J.J. J. Neurosci. 13, 1080–1087 (1993).

    Article  CAS  Google Scholar 

  13. Chesselet, M.F. et al. Prog. Brain Res. 99, 143–154 (1993).

    Article  CAS  Google Scholar 

  14. Sano, H. et al. J. Neurosci. 23, 9078–9088 (2003).

    Article  CAS  Google Scholar 

  15. Self, D.W. Neuropharmacology 47, 242–255 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Picciotto for helpful and critical comments on the manuscript and D. Houtteman, S. Laghmiri and L. Cuvelier for expert technical assistance. P.F.D. is Research Fellow of the Fonds de la Recherche Scientifique (bourse de doctorat Fonds de la Recherche Scientifique) and A.d.K.d.E. is a Research Associate of the Fonds de la Recherche Scientifique (Belgium). This study was supported by Fondation Médicale Reine Elisabeth (Belgium), Fonds de la Recherche Scientifique (Belgium), Fonds d'Encouragement à la Recherche from the Université Libre de Bruxelles, Action de Recherche Concertée from the Communauté Française Wallonie Bruxelles and Ministero Italiano dell'Università e della Ricerca (grant number PRIN20072BTSR2) to M.Z.

Author information

Authors and Affiliations

Authors

Contributions

P.F.D., S.N.S. and A.d.K.d.E. conceived and designed the experiments. P.F.D., A.d.K.d.E., B.B. and S.G. carried out the experiments. T.B. and A.W. contributed materials. P.F.D., M.Z., S.N.S. and A.d.K.d.E. analyzed the data and wrote the paper.

Corresponding author

Correspondence to Alban de Kerchove d'Exaerde.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Methods (PDF 9494 kb)

Supplementary Video 1

Bilateral D2R–striatopallidal neuron loss in the entire striatum induces hyperlocomotion. (MOV 2831 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durieux, P., Bearzatto, B., Guiducci, S. et al. D2R striatopallidal neurons inhibit both locomotor and drug reward processes. Nat Neurosci 12, 393–395 (2009). https://doi.org/10.1038/nn.2286

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2286

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing