Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning

Abstract

Although feedforward inhibition onto Purkinje cells was first documented 40 years ago, we understand little of how inhibitory interneurons contribute to cerebellar function in behaving animals. Using a mouse line (PC-Δγ2) in which GABAA receptor–mediated synaptic inhibition is selectively removed from Purkinje cells, we examined how feedforward inhibition from molecular layer interneurons regulates adaptation of the vestibulo-ocular reflex. Although impairment of baseline motor performance was relatively mild, the ability to adapt the phase of the vestibulo-ocular reflex and to consolidate gain adaptations was strongly compromised. Purkinje cells showed abnormal patterns of simple spikes, both during and in the absence of evoked compensatory eye movements. On the basis of modeling our experimental data, we propose that feedforward inhibition, by controlling the fine-scale patterns of Purkinje cell activity, enables the induction of plasticity in neurons of the cerebellar and vestibular nuclei.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PC-Δγ2 mice show normal cerebellar morphology and synaptic organization.
Figure 2: Loss of fast synaptic inhibition from Purkinje cells in PC-Δγ2 mice.
Figure 3: PC-Δγ2 mice show altered parallel fiber–evoked and spontaneous simple-spike firing in vitro and unaltered parallel fiber–Purkinje cell LTP and LTD.
Figure 4: Motor learning is severely affected in PC-Δγ2 mice.
Figure 5: Temporal patterns of simple spike activities of floccular Purkinje cells are specifically affected in PC-Δγ2 mice during both compensatory eye movement behavior and spontaneous behavior.
Figure 6: Interpretation of VOR adaptation data using a distributed memory model.

Similar content being viewed by others

References

  1. Smith, S.L. & Otis, T.S. Pattern-dependent, simultaneous plasticity differentially transforms the input-output relationship of a feedforward circuit. Proc. Natl. Acad. Sci. USA 102, 14901–14906 (2005).

    Article  CAS  Google Scholar 

  2. Kullmann, D.M. & Lamsa, K.P. Long-term synaptic plasticity in hippocampal interneurons. Nat. Rev. Neurosci. 8, 687–699 (2007).

    Article  CAS  Google Scholar 

  3. Pouille, F. & Scanziani, M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293, 1159–1163 (2001).

    Article  CAS  Google Scholar 

  4. Lamsa, K., Heeroma, J.H. & Kullmann, D.M. Hebbian LTP in feed-forward inhibitory interneurons and the temporal fidelity of input discrimination. Nat. Neurosci. 8, 916–924 (2005).

    Article  CAS  Google Scholar 

  5. Eccles, J.C., Ito, M. & Szentagothai, J. The Cerebellum as a Neuronal Machine (Springer-Verlag, New York, 1967).

    Book  Google Scholar 

  6. Miyashita, Y. & Nagao, S. Contribution of cerebellar intracortical inhibition to Purkinje cell response during vestibulo-ocular reflex of alert rabbits. J. Physiol. (Lond.) 351, 251–262 (1984).

    Article  CAS  Google Scholar 

  7. Mittmann, W., Koch, U. & Hausser, M. Feed-forward inhibition shapes the spike output of cerebellar Purkinje cells. J. Physiol. (Lond.) 563, 369–378 (2005).

    Article  CAS  Google Scholar 

  8. Barmack, N.H. & Yakhnitsa, V. Functions of interneurons in mouse cerebellum. J. Neurosci. 28, 1140–1152 (2008).

    Article  CAS  Google Scholar 

  9. Scelfo, B., Sacchetti, B. & Strata, P. Learning-related long-term potentiation of inhibitory synapses in the cerebellar cortex. Proc. Natl. Acad. Sci. USA 105, 769–774 (2008).

    Article  CAS  Google Scholar 

  10. Orduz, D. & Llano, I. Recurrent axon collaterals underlie facilitating synapses between cerebellar Purkinje cells. Proc. Natl. Acad. Sci. USA 104, 17831–17836 (2007).

    Article  CAS  Google Scholar 

  11. Davie, J.T., Clark, B.A. & Hausser, M. The origin of the complex spike in cerebellar Purkinje cells. J. Neurosci. 28, 7599–7609 (2008).

    Article  CAS  Google Scholar 

  12. Häusser, M. & Clark, B.A. Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19, 665–678 (1997).

    Article  Google Scholar 

  13. Jörntell, H. & Ekerot, C.F. Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron 34, 797–806 (2002).

    Article  Google Scholar 

  14. Santamaria, F., Tripp, P.G. & Bower, J.M. Feedforward inhibition controls the spread of granule cell–induced Purkinje cell activity in the cerebellar cortex. J. Neurophysiol. 97, 248–263 (2007).

    Article  Google Scholar 

  15. Raman, I.M. & Bean, B.P. Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. J. Neurosci. 17, 4517–4526 (1997).

    Article  CAS  Google Scholar 

  16. Wulff, P. et al. From synapse to behavior: rapid modulation of defined neuronal types with engineered GABAA receptors. Nat. Neurosci. 10, 923–929 (2007).

    Article  CAS  Google Scholar 

  17. Schweizer, C. et al. The gamma 2 subunit of GABA(A) receptors is required for maintenance of receptors at mature synapses. Mol. Cell. Neurosci. 24, 442–450 (2003).

    Article  CAS  Google Scholar 

  18. Barski, J.J., Dethleffsen, K. & Meyer, M. Cre recombinase expression in cerebellar Purkinje cells. Genesis 28, 93–98 (2000).

    Article  CAS  Google Scholar 

  19. Brickley, S.G., Cull-Candy, S.G. & Farrant, M. Single-channel properties of synaptic and extrasynaptic GABAA receptors suggest differential targeting of receptor subtypes. J. Neurosci. 19, 2960–2973 (1999).

    Article  CAS  Google Scholar 

  20. Lorez, M., Benke, D., Luscher, B., Mohler, H. & Benson, J.A. Single-channel properties of neuronal GABAA receptors from mice lacking the gamma2 subunit. J. Physiol. (Lond.) 527, 11–31 (2000).

    Article  CAS  Google Scholar 

  21. Brunel, N., Hakim, V., Isope, P., Nadal, J.P. & Barbour, B. Optimal information storage and the distribution of synaptic weights: perceptron versus Purkinje cell. Neuron 43, 745–757 (2004).

    CAS  PubMed  Google Scholar 

  22. Shin, S.L. et al. Regular patterns in cerebellar Purkinje cell simple spike trains. PLoS One 2, e485 (2007).

    Article  Google Scholar 

  23. Walter, J.T., Alvina, K., Womack, M.D., Chevez, C. & Khodakhah, K. Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat. Neurosci. 9, 389–397 (2006).

    Article  CAS  Google Scholar 

  24. Ito, M. Cerebellar flocculus hypothesis. Nature 363, 24–25 (1993).

    Article  CAS  Google Scholar 

  25. Lisberger, S.G. Cerebellar LTD: a molecular mechanism of behavioral learning? Cell 92, 701–704 (1998).

    Article  CAS  Google Scholar 

  26. Schonewille, M. et al. Zonal organization of the mouse flocculus: physiology, input and output. J. Comp. Neurol. 497, 670–682 (2006).

    Article  Google Scholar 

  27. Hoebeek, F.E. et al. Increased noise level of Purkinje cell activities minimizes impact of their modulation during sensorimotor control. Neuron 45, 953–965 (2005).

    Article  CAS  Google Scholar 

  28. Gittis, A.H. & du Lac, S. Intrinsic and synaptic plasticity in the vestibular system. Curr. Opin. Neurobiol. 16, 385–390 (2006).

    Article  CAS  Google Scholar 

  29. Kassardjian, C.D. et al. The site of a motor memory shifts with consolidation. J. Neurosci. 25, 7979–7985 (2005).

    Article  CAS  Google Scholar 

  30. Medina, J.F. & Mauk, M.D. Computer simulation of cerebellar information processing. Nat. Neurosci. 3 Suppl: 1205–1211 (2000).

    Article  CAS  Google Scholar 

  31. Medina, J.F., Nores, W.L. & Mauk, M.D. Inhibition of climbing fibers is a signal for the extinction of conditioned eyelid responses. Nature 416, 330–333 (2002).

    Article  CAS  Google Scholar 

  32. Shutoh, F., Ohki, M., Kitazawa, H., Itohara, S. & Nagao, S. Memory trace of motor learning shifts transsynaptically from cerebellar cortex to nuclei for consolidation. Neuroscience 139, 767–777 (2006).

    Article  CAS  Google Scholar 

  33. Coesmans, M., Weber, J.T., De Zeeuw, C.I. & Hansel, C. Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron 44, 691–700 (2004).

    Article  CAS  Google Scholar 

  34. Mann-Metzer, P. & Yarom, Y. Electrotonic coupling interacts with intrinsic properties to generate synchronized activity in cerebellar networks of inhibitory interneurons. J. Neurosci. 19, 3298–3306 (1999).

    Article  CAS  Google Scholar 

  35. Van Der Giessen, R.S., Maxeiner, S., French, P.J., Willecke, K. & De Zeeuw, C.I. Spatiotemporal distribution of Connexin45 in the olivocerebellar system. J. Comp. Neurol. 495, 173–184 (2006).

    Article  Google Scholar 

  36. Steuber, V. et al. Cerebellar LTD and pattern recognition by Purkinje cells. Neuron 54, 121–136 (2007).

    Article  CAS  Google Scholar 

  37. Blazquez, P.M., Hirata, Y. & Highstein, S.M. Chronic changes in inputs to dorsal Y neurons accompany VOR motor learning. J. Neurophysiol. 95, 1812–1825 (2006).

    Article  Google Scholar 

  38. Medina, J.F. & Lisberger, S.G. Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys. Nat. Neurosci. 11, 1185–1192 (2008).

    Article  CAS  Google Scholar 

  39. De Zeeuw, C.I. et al. Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. Neuron 20, 495–508 (1998).

    Article  CAS  Google Scholar 

  40. Feil, R. et al. Impairment of LTD and cerebellar learning by Purkinje cell–specific ablation of cGMP-dependent protein kinase I. J. Cell Biol. 163, 295–302 (2003).

    Article  CAS  Google Scholar 

  41. Hansel, C. et al. alphaCaMKII Is essential for cerebellar LTD and motor learning. Neuron 51, 835–843 (2006).

    Article  CAS  Google Scholar 

  42. Boyden, E.S. et al. Selective engagement of plasticity mechanisms for motor memory storage. Neuron 51, 823–834 (2006).

    Article  CAS  Google Scholar 

  43. Kano, M., Rexhausen, U., Dreessen, J. & Konnerth, A. Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature 356, 601–604 (1992).

    Article  CAS  Google Scholar 

  44. Duguid, I.C. & Smart, T.G. Retrograde activation of presynaptic NMDA receptors enhances GABA release at cerebellar interneuron–Purkinje cell synapses. Nat. Neurosci. 7, 525–533 (2004).

    Article  CAS  Google Scholar 

  45. Mittmann, W. & Hausser, M. Linking synaptic plasticity and spike output at excitatory and inhibitory synapses onto cerebellar Purkinje cells. J. Neurosci. 27, 5559–5570 (2007).

    Article  CAS  Google Scholar 

  46. Watt, A.J. et al. Traveling waves in developing cerebellar cortex mediated by asymmetrical Purkinje cell connectivity. Nat. Neurosci. 12, 463–473 (2009).

    Article  CAS  Google Scholar 

  47. de Solages, C. et al. High-frequency organization and synchrony of activity in the Purkinje cell layer of the cerebellum. Neuron 58, 775–788 (2008).

    Article  CAS  Google Scholar 

  48. Likhtik, E., Popa, D., Apergis-Schoute, J., Fidacaro, G.A. & Pare, D. Amygdala intercalated neurons are required for expression of fear extinction. Nature 454, 642–645 (2008).

    Article  CAS  Google Scholar 

  49. Stahl, J.S., van Alphen, A.M. & De Zeeuw, C.I. A comparison of video and magnetic search coil recordings of mouse eye movements. J. Neurosci. Methods 99, 101–110 (2000).

    Article  CAS  Google Scholar 

  50. Clements, J.D. & Bekkers, J.M. Detection of spontaneous synaptic events with an optimally scaled template. Biophys. J. 73, 220–229 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Cheyne, D. Massie, M. Rutteman, R. Avila Freire, E. Dalm and J.v.d. Burg for their excellent technical assistance, and D. Andersson and L. Kelly for their participation in the initial electrophysiological studies. This work was supported by the J. Ernest Tait Estate Aberdeen (W.W.), a Medical Research Council program grant G0800399 (P.W. and W.W.), the Royal Society (P.W.), the Institute Pasteur-Fondazione Cenci Bolognetti (M.R.), a Wellcome Trust program grant (M.F.), Regione Piemonte (Ricerca Scientifica Applicata A218 and Ricerca Sanitaria Finalizzata 2006) and Compagnia di San Paolo (M.S.-P.), the Dutch Organization for Medical Sciences (C.I.D.Z.), Life Sciences (C.I.D.Z.), Senter (Neuro-Bsik, C.I.D.Z.), Prinses Beatrix Fonds (C.I.D.Z.), and the SENSOPAC (SENSOrimotor structuring of Perception and Action for Emerging Cognition) program of the European Community (C.I.D.Z.).

Author information

Authors and Affiliations

Authors

Contributions

P.W. developed the mouse model and helped coordinate the project. M.S. and A.B. designed and performed VOR experiments and in vivo electrophysiology. M.F. and M.R. designed, performed and analyzed the in vitro electrophysiology experiments. P.W., L.V. and M.S.-P. performed quantitative anatomical studies. Z.G. and F.E.H. performed LTP and LTD experiments. S.v.D. designed and implemented the model. W.W. initiated the project and coordinated collaborations between groups. C.I.D.Z. designed experiments and guided the project. P.W., M.S., M.R., S.v.D., W.W., M.F. and C.I.D.Z. co-wrote the manuscript.

Corresponding authors

Correspondence to William Wisden, Mark Farrant or Chris I De Zeeuw.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Data (PDF 920 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wulff, P., Schonewille, M., Renzi, M. et al. Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning. Nat Neurosci 12, 1042–1049 (2009). https://doi.org/10.1038/nn.2348

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2348

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing