Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The columnar and laminar organization of inhibitory connections to neocortical excitatory cells

Abstract

The cytoarchitectonic similarities of different neocortical regions have given rise to the idea of 'canonical' connectivity between excitatory neurons of different layers within a column. It is unclear whether similarly general organizational principles also exist for inhibitory neocortical circuits. Here we delineate and compare local inhibitory-to-excitatory wiring patterns in all principal layers of primary motor (M1), somatosensory (S1) and visual (V1) cortex, using genetically targeted photostimulation in a mouse knock-in line that conditionally expresses channelrhodopsin-2 in GABAergic neurons. Inhibitory inputs to excitatory neurons derived largely from the same cortical layer within a three-column diameter. However, subsets of pyramidal cells in layers 2/3 and 5B received extensive translaminar inhibition. These neurons were prominent in V1, where they might correspond to complex cells, less numerous in barrel cortex and absent in M1. Although inhibitory connection patterns were stereotypical, the abundance of individual motifs varied between regions and cells, potentially reflecting functional specializations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ChR2 expression in GABAergic interneurons.
Figure 2: Genetically targeted photostimulation of GABAergic interneurons.
Figure 3: Optogenetic mapping of inhibitory connectivity.
Figure 4: Horizontal (columnar) organization of inhibitory connections.
Figure 5: Vertical (laminar) organization of inhibitory connections.
Figure 6: Area-specific differences in the laminar organization of inhibitory connections.
Figure 7: Cell-specific differences in the laminar organization of inhibitory connections.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Mountcastle, V.B. An organizing principle for cerebral function: the unit module and the distributed system. in The Mindful Brain (ed. Mountcastle, V.B. & Edelman, G.M.) 7–50 (MIT Press, 1978).

  2. Koralek, K.A., Jensen, K.F. & Killackey, H.P. Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex. Brain Res. 463, 346–351 (1988).

    Article  CAS  Google Scholar 

  3. Shepherd, G.M. & Svoboda, K. Laminar and columnar organization of ascending excitatory projections to layer 2/3 pyramidal neurons in rat barrel cortex. J. Neurosci. 25, 5670–5679 (2005).

    Article  CAS  Google Scholar 

  4. Barbour, D.L. & Callaway, E.M. Excitatory local connections of superficial neurons in rat auditory cortex. J. Neurosci. 28, 11174–11185 (2008).

    Article  CAS  Google Scholar 

  5. Weiler, N., Wood, L., Yu, J., Solla, S.A. & Shepherd, G.M. Top-down laminar organization of the excitatory network in motor cortex. Nat. Neurosci. 11, 360–366 (2008).

    Article  CAS  Google Scholar 

  6. Gilbert, C.D. & Wiesel, T.N. Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex. Nature 280, 120–125 (1979).

    Article  CAS  Google Scholar 

  7. Gilbert, C.D. & Wiesel, T.N. Functional organization of the visual cortex. Prog. Brain Res. 58, 209–218 (1983).

    Article  CAS  Google Scholar 

  8. Douglas, R.J. & Martin, K.A. Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 (2004).

    Article  CAS  Google Scholar 

  9. Douglas, R.J. & Martin, K.A. Mapping the matrix: the ways of neocortex. Neuron 56, 226–238 (2007).

    Article  CAS  Google Scholar 

  10. Gupta, A., Wang, Y. & Markram, H. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278 (2000).

    Article  CAS  Google Scholar 

  11. Markram, H. et al. Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5, 793–807 (2004).

    Article  CAS  Google Scholar 

  12. Gibson, J.R., Beierlein, M. & Connors, B.W. Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75–79 (1999).

    Article  CAS  Google Scholar 

  13. Blatow, M., Caputi, A. & Monyer, H. Molecular diversity of neocortical GABAergic interneurones. J. Physiol. (Lond.) 562, 99–105 (2005).

    Article  CAS  Google Scholar 

  14. Sun, Q.Q., Huguenard, J.R. & Prince, D.A. Barrel cortex microcircuits: thalamocortical feedforward inhibition in spiny stellate cells is mediated by a small number of fast-spiking interneurons. J. Neurosci. 26, 1219–1230 (2006).

    Article  CAS  Google Scholar 

  15. Somogyi, P. & Klausberger, T. Defined types of cortical interneurone structure space and spike timing in the hippocampus. J. Physiol. (Lond.) 562, 9–26 (2005).

    Article  CAS  Google Scholar 

  16. Helmstaedter, M., Sakmann, B. & Feldmeyer, D. Neuronal correlates of local, lateral, and translaminar inhibition with reference to cortical columns. Cereb. Cortex 19, 926–937 (2009).

    Article  Google Scholar 

  17. Dantzker, J.L. & Callaway, E.M. Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons. Nat. Neurosci. 3, 701–707 (2000).

    Article  CAS  Google Scholar 

  18. Thomson, A.M., West, D.C., Wang, Y. & Bannister, A.P. Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2–5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. Cereb. Cortex 12, 936–953 (2002).

    Article  Google Scholar 

  19. Binzegger, T., Douglas, R.J. & Martin, K.A. A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 24, 8441–8453 (2004).

    Article  CAS  Google Scholar 

  20. Yoshimura, Y. & Callaway, E.M. Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nat. Neurosci. 8, 1552–1559 (2005).

    Article  CAS  Google Scholar 

  21. Kapfer, C., Glickfeld, L.L., Atallah, B.V. & Scanziani, M. Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex. Nat. Neurosci. 10, 743–753 (2007).

    Article  CAS  Google Scholar 

  22. Silberberg, G. & Markram, H. Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron 53, 735–746 (2007).

    Article  CAS  Google Scholar 

  23. Thomson, A.M. & Lamy, C. Functional maps of neocortical local circuitry. Front. Neurosci. 1, 19–42 (2007).

    Article  CAS  Google Scholar 

  24. Brill, J. & Huguenard, J.R. Robust short-latency perisomatic inhibition onto neocortical pyramidal cells detected by laser-scanning photostimulation. J. Neurosci. 29, 7413–7423 (2009).

    Article  CAS  Google Scholar 

  25. Xu, X. & Callaway, E.M. Laminar specificity of functional input to distinct types of inhibitory cortical neurons. J. Neurosci. 29, 70–85 (2009).

    Article  CAS  Google Scholar 

  26. Berger, T.K., Perin, R., Silberberg, G. & Markram, H. Frequency-dependent disynaptic inhibition in the pyramidal network: a ubiquitous pathway in the developing rat neocortex. J. Physiol. (Lond.) 587, 5411–5425 (2009).

    Article  CAS  Google Scholar 

  27. Zemelman, B.V., Lee, G.A., Ng, M. & Miesenböck, G. Selective photostimulation of genetically chARGed neurons. Neuron 33, 15–22 (2002).

    Article  CAS  Google Scholar 

  28. Lima, S.Q. & Miesenböck, G. Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121, 141–152 (2005).

    Article  CAS  Google Scholar 

  29. Miesenböck, G. & Kevrekidis, I.G. Optical imaging and control of genetically designated neurons in functioning circuits. Annu. Rev. Neurosci. 28, 533–563 (2005).

    Article  Google Scholar 

  30. Miesenböck, G. The optogenetic catechism. Science 326, 395–399 (2009).

    Article  Google Scholar 

  31. Callaway, E.M. & Katz, L.C. Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc. Natl. Acad. Sci. USA 90, 7661–7665 (1993).

    Article  CAS  Google Scholar 

  32. Hegemann, P., Fuhrmann, M. & Kateriya, S. Algal sensory photoreceptors. J. Phycol. 37, 668–676 (2001).

    Article  CAS  Google Scholar 

  33. Xu, X., Roby, K.D. & Callaway, E.M. Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells. J. Comp. Neurol. 518, 389–404 (2010).

    Article  Google Scholar 

  34. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10, 663–668 (2007).

    Article  CAS  Google Scholar 

  35. Petreanu, L., Mao, T., Sternson, S.M. & Svoboda, K. The subcellular organization of neocortical excitatory connections. Nature 457, 1142–1145 (2009).

    Article  CAS  Google Scholar 

  36. Thomson, A.M., West, D.C., Hahn, J. & Deuchars, J. Single axon IPSPs elicited in pyramidal cells by three classes of interneurones in slices of rat neocortex. J. Physiol. (Lond.) 496, 81–102 (1996).

    Article  CAS  Google Scholar 

  37. Llano, I., Leresche, N. & Marty, A. Calcium entry increases the sensitivity of cerebellar Purkinje cells to applied GABA and decreases inhibitory synaptic currents. Neuron 6, 565–574 (1991).

    Article  CAS  Google Scholar 

  38. Kano, M., Ohno-Shosaku, T., Hashimotodani, Y., Uchigashima, M. & Watanabe, M. Endocannabinoid-mediated control of synaptic transmission. Physiol. Rev. 89, 309–380 (2009).

    Article  CAS  Google Scholar 

  39. Petersen, C.C. & Sakmann, B. Functionally independent columns of rat somatosensory barrel cortex revealed with voltage-sensitive dye imaging. J. Neurosci. 21, 8435–8446 (2001).

    Article  CAS  Google Scholar 

  40. Wang, Y. et al. Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. J. Physiol. (Lond.) 561, 65–90 (2004).

    Article  CAS  Google Scholar 

  41. Murayama, M. et al. Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature 457, 1137–1141 (2009).

    Article  CAS  Google Scholar 

  42. Kozloski, J., Hamzei-Sichani, F. & Yuste, R. Stereotyped position of local synaptic targets in neocortex. Science 293, 868–872 (2001).

    Article  CAS  Google Scholar 

  43. Otsuka, T. & Kawaguchi, Y. Cortical inhibitory cell types differentially form intralaminar and interlaminar subnetworks with excitatory neurons. J. Neurosci. 29, 10533–10540 (2009).

    Article  CAS  Google Scholar 

  44. Cruikshank, S.J., Urabe, H., Nurmikko, A.V. & Connors, B.W. Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons. Neuron 65, 230–245 (2010).

    Article  CAS  Google Scholar 

  45. Niell, C.M. & Stryker, M.P. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28, 7520–7536 (2008).

    Article  CAS  Google Scholar 

  46. Priebe, N.J. & Ferster, D. Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron 57, 482–497 (2008).

    Article  CAS  Google Scholar 

  47. Hirsch, J.A. Synaptic physiology and receptive field structure in the early visual pathway of the cat. Cereb. Cortex 13, 63–69 (2003).

    Article  Google Scholar 

  48. Chance, F.S., Nelson, S.B. & Abbott, L.F. Complex cells as cortically amplified simple cells. Nat. Neurosci. 2, 277–282 (1999).

    Article  CAS  Google Scholar 

  49. Chance, F.S. & Abbott, L.F. Divisive inhibition in recurrent networks. Network 11, 119–129 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Chambon (Université de Strasbourg), F. Costantini (Columbia University), S. Dymecki (Harvard Medical School), G. Nagel (Universität Würzburg) and P. Soriano (Mount Sinai School of Medicine) for plasmids and T. Ellender, M. Kohl, K. Lamsa, W. Nissen, T. Nottoli, R. Roorda, Y. Tan and L. Upton for assistance and/or discussions. This work was supported by the UK Medical Research Council (G.M.), the US National Institutes of Health (G.M.), the Dana Foundation (G.M.), the US Office of Naval Research (G.M.), the Boehringer Ingelheim Fonds (D.K.) and the Christopher Welch Scholarship Fund (D.K.).

Author information

Authors and Affiliations

Authors

Contributions

D.K. and G.M. designed the study, analyzed the results and wrote the paper. B.V.Z. generated the R26ChR2-EGFP and Gad2CreERT2 targeting constructs. C.B. and M.W. helped with the initial characterization of the resulting mouse knock-in lines. D.K. performed all experiments.

Corresponding author

Correspondence to Gero Miesenböck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1–11 (PDF 2934 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kätzel, D., Zemelman, B., Buetfering, C. et al. The columnar and laminar organization of inhibitory connections to neocortical excitatory cells. Nat Neurosci 14, 100–107 (2011). https://doi.org/10.1038/nn.2687

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2687

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing