Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Regulation of neuronal input transformations by tunable dendritic inhibition

Abstract

Transforming synaptic input into action potential output is a fundamental function of neurons. The pattern of action potential output from principal cells of the mammalian hippocampus encodes spatial and nonspatial information, but the cellular and circuit mechanisms by which neurons transform their synaptic input into a given output are unknown. Using a combination of optical activation and cell type–specific pharmacogenetic silencing in vitro, we found that dendritic inhibition is the primary regulator of input-output transformations in mouse hippocampal CA1 pyramidal cells, and acts by gating the dendritic electrogenesis driving burst spiking. Dendrite-targeting interneurons are themselves modulated by interneurons targeting pyramidal cell somata, providing a synaptic substrate for tuning pyramidal cell output through interactions in the local inhibitory network. These results provide evidence for a division of labor in cortical circuits, where distinct computational functions are implemented by subtypes of local inhibitory neurons.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location-specific inhibition shapes excitatory synaptic integration in single CA1PC dendrites.
Figure 2: Independent control over excitatory and inhibitory synaptic inputs to CA1PCs.
Figure 3: Silencing SOM+ dendrite-targeting interneurons, but not parvalbumin+ (PV+) perisomatic-targeting interneurons, increases the firing rate of CA1PCs to CA3SC input.
Figure 4: Dendrite-targeting interneurons inhibit NMDAR-dependent dendritic nonlinearities and burst spiking.
Figure 5: Cell type–specific disinhibition within the local inhibitory network.

References

  1. Kandel, E.R. & Spencer, W.A. Electrophysiology of hippocampal neurons II: after-potentials and repetitive firing. J. Neurophysiol. 24, 243–259 (1961).

    Article  CAS  Google Scholar 

  2. Thompson, L.T. & Best, P.J. Place cells and silent cells in the hippocampus of freely behaving rats. J. Neurosci. 9, 2382–2390 (1989).

    Article  CAS  Google Scholar 

  3. O'Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).

    Article  CAS  Google Scholar 

  4. O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford University Press, Oxford, 1978).

  5. Ahmed, O.J. & Mehta, M.R. The hippocampal rate code: anatomy, physiology, and theory. Trends Neurosci. 32, 329–338 (2009).

    Article  CAS  Google Scholar 

  6. Colgin, L.L., Moser, E.I. & Moser, M.-B. Understanding memory through hippocampal remapping. Trends Neurosci. 31, 469–477 (2008).

    Article  CAS  Google Scholar 

  7. Nevian, T., Larkum, M.E., Polsky, A. & Schiller, J. Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat. Neurosci. 10, 206–214 (2007).

    Article  CAS  Google Scholar 

  8. Larkum, M.E., Zhu, J.J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341 (1999).

    Article  CAS  Google Scholar 

  9. Gasparini, S. & Magee, J.C. State-dependent dendritic computation in hippocampal CA1 pyramidal neurons. J. Neurosci. 26, 2088–2100 (2006).

    Article  CAS  Google Scholar 

  10. Losonczy, A. & Magee, J.C. Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50, 291–307 (2006).

    Article  CAS  Google Scholar 

  11. Harvey, C.D., Collman, F., Dombeck, D.A. & Tank, D.W. Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461, 941–946 (2009).

    Article  CAS  Google Scholar 

  12. Epsztein, J., Brecht, M. & Lee, A.K. Intracellular determinants of hippocampal CA1 place and silence cell activity in a novel environment. Neuron 70, 109–120 (2011).

    Article  CAS  Google Scholar 

  13. Isaacson, J.S. & Scanziani, M. How inhibition shapes cortical activity. Neuron 72, 231–243 (2011).

    Article  CAS  Google Scholar 

  14. Buhl, E.H., Halasy, K. & Somogyi, P. Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature 368, 823–828 (1994).

    Article  CAS  Google Scholar 

  15. Freund, T.F. & Buzsáki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    Article  CAS  Google Scholar 

  16. Klausberger, T. & Somogyi, P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321, 53–57 (2008).

    Article  CAS  Google Scholar 

  17. Cobb, S.R., Buhl, E.H., Halasy, K., Paulsen, O. & Somogyi, P. Synchronization of neuronal activity in hippocampus by individual GABAergic neurons. Nature 378, 75–78 (1995).

    Article  CAS  Google Scholar 

  18. Pouille, F. & Scanziani, M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293, 1159–1163 (2001).

    Article  CAS  Google Scholar 

  19. Losonczy, A., Zemelman, B.V., Vaziri, A. & Magee, J.C. Network mechanisms of theta related neuronal activity in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 13, 967–972 (2010).

    Article  CAS  Google Scholar 

  20. Megías, M., Emri, Z., Freund, T.F. & Gulyas, A.I. Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102, 527–540 (2001).

    Article  Google Scholar 

  21. Klausberger, T. GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus. Eur. J. Neurosci. 30, 947–957 (2009).

    Article  Google Scholar 

  22. Klausberger, T. et al. Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nat. Neurosci. 7, 41–47 (2004).

    Article  CAS  Google Scholar 

  23. Murayama, M. et al. Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature 457, 1137–1141 (2009).

    Article  CAS  Google Scholar 

  24. Larkum, M.E., Nevian, T., Sandler, M., Polsky, A. & Schiller, J. Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325, 756–760 (2009).

    Article  CAS  Google Scholar 

  25. Miles, R., Tóth, K., Gulyás, A.I., Hájos, N. & Freund, T.F. Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16, 815–823 (1996).

    Article  CAS  Google Scholar 

  26. Collingridge, G.L., Herron, C.E. & Lester, R.A.J. Synaptic activation of N-methyl-D-aspartate receptors in the Schaffer collateral–commissural pathway of rat hippocampus. J. Physiol. (Lond.) 399, 282–300 (1988).

    Google Scholar 

  27. Poirazi, P., Brannon, T. & Mel, B.W. Pyramidal neuron as 2-layer neural network. Neuron 37, 989–999 (2003).

    Article  CAS  Google Scholar 

  28. Losonczy, A., Makara, J.K. & Magee, J.C. Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452, 436–441 (2008).

    Article  CAS  Google Scholar 

  29. Branco, T. & Häusser, M. The single dendritic branch as a fundamental functional unit in the nervous system. Curr. Opin. Neurobiol. 20, 494–502 (2010).

    Article  CAS  Google Scholar 

  30. Rial Verde, E.M., Zayat, L., Etchenique, R. & Yuste, R. Photorelease of GABA with visible light using an inorganic caging group. Front. Neural Circuits 2, 2 (2008).

    Article  Google Scholar 

  31. Williams, S.R. Spatial compartmentalization and functional impact of conductance in pyramidal neurons. Nat. Neurosci. 7, 961–967 (2004).

    Article  CAS  Google Scholar 

  32. Williams, S.R. & Stuart, G.J. Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons. Science 295, 1907–1910 (2002).

    Article  CAS  Google Scholar 

  33. Knowles, W.D. & Schwartzkroin, P.S. Axonal ramifications of hippocampal CA1 pyramidal cells. J. Neurosci. 1, 1236–1241 (1981).

    Article  CAS  Google Scholar 

  34. Buzsáki, G. Theta oscillations in the hippocampus. Neuron 33, 325–340 2002).

    Article  Google Scholar 

  35. Magnus, C.J. et al. Chemical and genetic engineering of selective ligand-ion channel interactions. Science 333, 1292–1296 (2011).

    Article  CAS  Google Scholar 

  36. Atasoy, D., Aponte, Y., Su, H.H. & Sternson, S.M.A. FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 7025–7030 (2008).

    Article  CAS  Google Scholar 

  37. Losonczy, A., Zhang, L., Shigemoto, R., Somogyi, P. & Nusser, Z. Cell type dependence and variability in the short-term plasticity of EPSCs in identified mouse hippocampal interneurons. J. Physiol. (Lond.) 542, 193–210 (2002).

    Article  CAS  Google Scholar 

  38. Klausberger, T. et al. Brain state– and cell type–specific firing of hippocampal interneurons in vivo. Nature 421, 844–848 (2003).

    Article  CAS  Google Scholar 

  39. Katona, I. et al. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J. Neurosci. 19, 4544–4558 (1999).

    Article  CAS  Google Scholar 

  40. Magee, J.C. & Carruth, M. Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons. J. Neurophysiol. 82, 1895–1901 (1999).

    Article  CAS  Google Scholar 

  41. Takahashi, H. & Magee, J.C. Pathway interactions and synaptic plasticity in the dendritic tuft regions of CA1 pyramidal neurons. Neuron 62, 102–111 (2009).

    Article  CAS  Google Scholar 

  42. Golding, N.L., Jung, H.Y., Mickus, T. & Spruston, N. Dendritic calcium spike initiation and repolarization are controlled by distinct potassium channel subtypes in CA1 pyramidal neurons. J. Neurosci. 19, 8789–8798 (1999).

    Article  CAS  Google Scholar 

  43. Maccaferri, G., Roberts, J.D., Szucs, P., Cottingham, C.A. & Somogyi, P. Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro. J. Physiol. (Lond.) 524, 91–116 (2000).

    Article  CAS  Google Scholar 

  44. Cobb, S.R. et al. Synaptic effects of identified interneurons innervating both interneurons and pyramidal cells in the rat hippocampus. Neuroscience 79, 629–648 (1997).

    Article  CAS  Google Scholar 

  45. Jarsky, T., Roxin, A., Kath, W.L. & Spruston, N. Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nat. Neurosci. 8, 1667–1676 (2005).

    Article  CAS  Google Scholar 

  46. Mulligan, K.A. & Törk, I. Serotoninergic innervation of the cat cerebral cortex. J. Comp. Neurol. 270, 86–110 (1988).

    Article  CAS  Google Scholar 

  47. Varga, V. et al. Fast synaptic subcortical control of hippocampal circuits. Science 326, 449–453 (2009).

    Article  CAS  Google Scholar 

  48. Cope, D.W. et al. Cholecystokinin-immunopositive basket and Schaffer collateral–associated interneurons target different domains of pyramidal cells in the CA1 area of the rat hippocampus. Neuroscience 109, 63–80 (2002).

    Article  CAS  Google Scholar 

  49. Fuentealba, P. et al. Ivy cells: a population of nitric oxide–producing, slow-spiking GABAergic neurons and their involvement in hippocampal network activity. Neuron 57, 917–929 (2008).

    Article  CAS  Google Scholar 

  50. Poirazi, P., Brannon, T. & Mel, B.W. Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron 37, 977–987 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Nyilas, R. Field, A. Qureshi, J.K. Baruni and A. Villacis for help with histology. We thank J.C. Magee, L.F. Abbott, G. Buzsáki, S.A. Siegelbaum and T.M. Jessell for discussions and comments on a previous version of the manuscript. This work was supported by Natural Sciences and Engineering Research Council of Canada Postgraduate Scholarships (M.L.-B. and P.K.), the Searle Scholar Program, the Gatsby Foundation and Kavli Institute at Columbia University (A.L.) and the Howard Hughes Medical Institute (S.M.S.). F.B. thanks the Agence Nationale pour la Recherche (France) for financial support (ANR PCV 07 10035).

Author information

Authors and Affiliations

Authors

Contributions

M.L.-B. and A.L. designed the study. M.L.-B., G.F.T. and A.L. performed all electrophysiological and anatomical experiments and analyzed the data. P.K. performed compartmental modeling. P.H.L. and S.M.S. provided constructs and compounds for the PSAM-PSEM method. F.B., X.-H.S. and J.F.N. synthesized and provided PENB-L-glutamate. B.V.Z. prepared plasmids, designed rAAV viruses and generated knock-in mouse lines. M.L.-B. and A.L. wrote the paper with the help of the other authors.

Corresponding author

Correspondence to Attila Losonczy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 9685 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lovett-Barron, M., Turi, G., Kaifosh, P. et al. Regulation of neuronal input transformations by tunable dendritic inhibition. Nat Neurosci 15, 423–430 (2012). https://doi.org/10.1038/nn.3024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3024

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing