Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Channel properties reveal differential expression of TARPed and TARPless AMPARs in stargazer neurons

Abstract

Dynamic regulation of calcium-permeable AMPA receptors (CP-AMPARs) is important for normal synaptic transmission, plasticity and pathological changes. Although the involvement of transmembrane AMPAR regulatory proteins (TARPs) in trafficking of calcium-impermeable AMPARs (CI-AMPARs) has been extensively studied, their role in the surface expression and function of CP-AMPARs remains unclear. We examined AMPAR-mediated currents in cerebellar stellate cells from stargazer mice, which lack the prototypical TARP stargazin (γ-2). We found a marked increase in the contribution of CP-AMPARs to synaptic responses, indicating that, unlike CI-AMPARs, these can localize at synapses in the absence of γ-2. In contrast with CP-AMPARs in extrasynaptic regions, synaptic CP-AMPARs displayed an unexpectedly low channel conductance and strong block by intracellular spermine, suggesting that they were 'TARPless'. As a proof of principle that TARP association is not an absolute requirement for AMPAR clustering at synapses, miniature excitatory postsynaptic currents mediated by TARPless AMPARs were readily detected in stargazer granule cells following knockdown of their only other TARP, γ-7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of γ-2 increases EPSC rectification in stellate cells.
Figure 2: Amplitude and kinetic properties of qEPSCs in control and stg/stg stellate cells.
Figure 3: Enhanced block by intracellular spermine and extracellular PhTx-433 of parallel fiber–evoked qEPSCs in stg/stg stellate cells.
Figure 4: Single-channel conductance of synaptic AMPARs is reduced in stg/stg stellate cells.
Figure 5: Extrasynaptic AMPARs in stg/stg stellate cells exhibit increased rectification and large single-channel conductance.
Figure 6: Direct resolution of AMPAR channel events in outside-out somatic patches from control and stg/stg stellate cells.
Figure 7: CNQX is not a partial agonist for CP-AMPARs containing TARP γ-7.
Figure 8: shRNA knockdown of TARP γ-7 rescues synaptic transmission in stg/stg granule cells.

Similar content being viewed by others

References

  1. Traynelis, S.F. et al. Glutamate receptor ion channels: structure, regulation and function. Pharmacol. Rev. 62, 405–496 (2010).

    Article  CAS  Google Scholar 

  2. Chen, L. et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 408, 936–943 (2000).

    Article  CAS  Google Scholar 

  3. Kato, A.S. et al. New transmembrane AMPA receptor regulatory protein isoform, gamma-7, differentially regulates AMPA receptors. J. Neurosci. 27, 4969–4977 (2007).

    Article  CAS  Google Scholar 

  4. Soto, D. et al. Selective regulation of long-form calcium-permeable AMPA receptors by an atypical TARP, gamma-5. Nat. Neurosci. 12, 277–285 (2009).

    Article  CAS  Google Scholar 

  5. Tomita, S. et al. Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. J. Cell Biol. 161, 805–816 (2003).

    Article  CAS  Google Scholar 

  6. Vandenberghe, W., Nicoll, R.A. & Bredt, D.S. Stargazin is an AMPA receptor auxiliary subunit. Proc. Natl. Acad. Sci. USA 102, 485–490 (2005).

    Article  CAS  Google Scholar 

  7. Bats, C., Groc, L. & Choquet, D. The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron 53, 719–734 (2007).

    Article  CAS  Google Scholar 

  8. Schnell, E. et al. Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proc. Natl. Acad. Sci. USA 99, 13902–13907 (2002).

    Article  CAS  Google Scholar 

  9. Bedoukian, M.A., Weeks, A.M. & Partin, K.M. Different domains of the AMPA receptor direct stargazin-mediated trafficking and stargazin-mediated modulation of kinetics. J. Biol. Chem. 281, 23908–23921 (2006).

    Article  CAS  Google Scholar 

  10. Cho, C.H., St-Gelais, F., Zhang, W., Tomita, S. & Howe, J.R. Two families of TARP isoforms that have distinct effects on the kinetic properties of AMPA receptors and synaptic currents. Neuron 55, 890–904 (2007).

    Article  CAS  Google Scholar 

  11. Körber, C., Werner, M., Kott, S., Ma, Z.L. & Hollmann, M. The transmembrane AMPA receptor regulatory protein gamma 4 is a more effective modulator of AMPA receptor function than stargazin (gamma 2). J. Neurosci. 27, 8442–8447 (2007).

    Article  Google Scholar 

  12. Milstein, A.D., Zhou, W., Karimzadegan, S., Bredt, D.S. & Nicoll, R.A. TARP subtypes differentially and dose-dependently control synaptic AMPA receptor gating. Neuron 55, 905–918 (2007).

    Article  CAS  Google Scholar 

  13. Priel, A. et al. Stargazin reduces desensitization and slows deactivation of the AMPA-type glutamate receptors. J. Neurosci. 25, 2682–2686 (2005).

    Article  CAS  Google Scholar 

  14. Soto, D., Coombs, I.D., Kelly, L., Farrant, M. & Cull-Candy, S.G. Stargazin attenuates intracellular polyamine block of calcium-permeable AMPA receptors. Nat. Neurosci. 10, 1260–1267 (2007).

    Article  CAS  Google Scholar 

  15. Tomita, S. et al. Stargazin modulates AMPA receptor gating and trafficking by distinct domains. Nature 435, 1052–1058 (2005).

    Article  CAS  Google Scholar 

  16. Turetsky, D., Garringer, E. & Patneau, D.K. Stargazin modulates native AMPA receptor functional properties by two distinct mechanisms. J. Neurosci. 25, 7438–7448 (2005).

    Article  CAS  Google Scholar 

  17. Kott, S., Sager, C., Tapken, D., Werner, M. & Hollmann, M. Comparative analysis of the pharmacology of GluR1 in complex with transmembrane AMPA receptor regulatory proteins gamma2, gamma3, gamma4, and gamma8. Neuroscience 158, 78–88 (2009).

    Article  CAS  Google Scholar 

  18. Fukaya, M., Yamazaki, M., Sakimura, K. & Watanabe, M. Spatial diversity in gene expression for VDCCgamma subunit family in developing and adult mouse brains. Neurosci. Res. 53, 376–383 (2005).

    Article  CAS  Google Scholar 

  19. Cull-Candy, S., Kelly, L. & Farrant, M. Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond. Curr. Opin. Neurobiol. 16, 288–297 (2006).

    Article  CAS  Google Scholar 

  20. Isaac, J.T., Ashby, M. & McBain, C.J. The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron 54, 859–871 (2007).

    Article  CAS  Google Scholar 

  21. Liu, S.J. & Zukin, R.S. Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci. 30, 126–134 (2007).

    Article  CAS  Google Scholar 

  22. Bellone, C. & Luscher, C. Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. Nat. Neurosci. 9, 636–641 (2006).

    Article  CAS  Google Scholar 

  23. Chávez, A.E., Singer, J.H. & Diamond, J.S. Fast neurotransmitter release triggered by Ca influx through AMPA-type glutamate receptors. Nature 443, 705–708 (2006).

    Article  Google Scholar 

  24. Gardner, S.M. et al. Calcium-permeable AMPA receptor plasticity is mediated by subunit-specific interactions with PICK1 and NSF. Neuron 45, 903–915 (2005).

    Article  CAS  Google Scholar 

  25. Liu, S.Q.J. & Cull-Candy, S.G. Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature 405, 454–458 (2000).

    Article  CAS  Google Scholar 

  26. Rozov, A. & Burnashev, N. Polyamine-dependent facilitation of postsynaptic AMPA receptors counteracts paired-pulse depression. Nature 401, 594–598 (1999).

    Article  CAS  Google Scholar 

  27. Kwak, S. & Weiss, J.H. Calcium-permeable AMPA channels in neurodegenerative disease and ischemia. Curr. Opin. Neurobiol. 16, 281–287 (2006).

    Article  CAS  Google Scholar 

  28. Hashimoto, K. et al. Impairment of AMPA receptor function in cerebellar granule cells of ataxic mutant mouse stargazer. J. Neurosci. 19, 6027–6036 (1999).

    Article  CAS  Google Scholar 

  29. Yamazaki, M. et al. TARPs gamma-2 and gamma-7 are essential for AMPA receptor expression in the cerebellum. Eur. J. Neurosci. 31, 2204–2220 (2010).

    Article  Google Scholar 

  30. Liu, Y. et al. A single fear-inducing stimulus induces a transcription-dependent switch in synaptic AMPAR phenotype. Nat. Neurosci. 13, 223–231 (2010).

    Article  CAS  Google Scholar 

  31. Rossi, B., Maton, G. & Collin, T. Calcium-permeable presynaptic AMPA receptors in cerebellar molecular layer interneurones. J. Physiol. (Lond.) 586, 5129–5145 (2008).

    Article  CAS  Google Scholar 

  32. Kelly, L., Farrant, M. & Cull-Candy, S.G. Synaptic mGluR activation drives plasticity of calcium-permeable AMPA receptors. Nat. Neurosci. 12, 593–601 (2009).

    Article  CAS  Google Scholar 

  33. Liu, S.J. & Cull-Candy, S.G. Activity-dependent change in AMPA receptor properties in cerebellar stellate cells. J. Neurosci. 22, 3881–3889 (2002).

    Article  CAS  Google Scholar 

  34. Bowie, D., Lange, G.D. & Mayer, M.L. Activity-dependent modulation of glutamate receptors by polyamines. J. Neurosci. 18, 8175–8185 (1998).

    Article  CAS  Google Scholar 

  35. Liu, S.J. & Cull-Candy, S.G. Subunit interaction with PICK and GRIP controls Ca2+ permeability of AMPARs at cerebellar synapses. Nat. Neurosci. 8, 768–775 (2005).

    Article  CAS  Google Scholar 

  36. Fiszman, M.L. et al. NMDA receptors increase the size of GABAergic terminals and enhance GABA release. J. Neurosci. 25, 2024–2031 (2005).

    Article  CAS  Google Scholar 

  37. Leitch, B., Shevtsova, O. & Kerr, J.R. Selective reduction in synaptic proteins involved in vesicle docking and signaling at synapses in the ataxic mutant mouse stargazer. J. Comp. Neurol. 512, 52–73 (2009).

    Article  CAS  Google Scholar 

  38. Clark, B.A. & Cull-Candy, S.G. Activity-dependent recruitment of extrasynaptic NMDA receptor activation at an AMPA receptor–only synapse. J. Neurosci. 22, 4428–4436 (2002).

    Article  CAS  Google Scholar 

  39. Tóth, K. & McBain, C.J. Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons. Nat. Neurosci. 1, 572–578 (1998).

    Article  Google Scholar 

  40. Feldmeyer, D. et al. Neurological dysfunctions in mice expressing different levels of the Q/R site-unedited AMPAR subunit GluR-B. Nat. Neurosci. 2, 57–64 (1999).

    Article  CAS  Google Scholar 

  41. Swanson, G.T., Kamboj, S.K. & Cull-Candy, S.G. Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation and subunit composition. J. Neurosci. 17, 58–69 (1997).

    Article  CAS  Google Scholar 

  42. Tardin, C., Cognet, L., Bats, C., Lounis, B. & Choquet, D. Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J. 22, 4656–4665 (2003).

    Article  CAS  Google Scholar 

  43. Sun, L. & June Liu, S. Activation of extrasynaptic NMDA receptors induces a PKC-dependent switch in AMPA receptor subtypes in mouse cerebellar stellate cells. J. Physiol. (Lond.) 583, 537–553 (2007).

    Article  CAS  Google Scholar 

  44. Menuz, K., Stroud, R.M., Nicoll, R.A. & Hays, F.A. TARP auxiliary subunits switch AMPA receptor antagonists into partial agonists. Science 318, 815–817 (2007).

    Article  CAS  Google Scholar 

  45. Menuz, K., O'Brien, J.L., Karmizadegan, S., Bredt, D.S. & Nicoll, R.A. TARP redundancy is critical for maintaining AMPA receptor function. J. Neurosci. 28, 8740–8746 (2008).

    Article  CAS  Google Scholar 

  46. Cathala, L., Holderith, N.B., Nusser, Z., DiGregorio, D.A. & Cull-Candy, S.G. Changes in synaptic structure underlie the developmental speeding of AMPA receptor–mediated EPSCs. Nat. Neurosci. 8, 1310–1318 (2005).

    Article  CAS  Google Scholar 

  47. Meng, H., Walker, N., Su, Y. & Qiao, X. Stargazin mutation impairs cerebellar synaptogenesis, synaptic maturation and synaptic protein distribution. Brain Res. 1124, 197–207 (2006).

    Article  CAS  Google Scholar 

  48. Richardson, C.A. & Leitch, B. Phenotype of cerebellar glutamatergic neurons is altered in stargazer mutant mice lacking brain-derived neurotrophic factor mRNA expression. J. Comp. Neurol. 481, 145–159 (2005).

    Article  CAS  Google Scholar 

  49. Gill, M.B. et al. Cornichon-2 modulates AMPA receptor–transmembrane AMPA receptor regulatory protein assembly to dictate gating and pharmacology. J. Neurosci. 31, 6928–6938 (2011).

    Article  CAS  Google Scholar 

  50. Jackson, A.C. & Nicoll, R.A. Stargazin (TARP gamma-2) is required for compartment-specific AMPA receptor trafficking and synaptic plasticity in cerebellar stellate cells. J. Neurosci. 31, 3939–3952 (2011).

    Article  CAS  Google Scholar 

  51. López-Bendito, G. et al. Preferential origin and layer destination of GAD65-GFP cortical interneurons. Cereb. Cortex 14, 1122–1133 (2004).

    Article  Google Scholar 

  52. Letts, V.A. et al. The mouse stargazer gene encodes a neuronal Ca2+-channel gamma subunit. Nat. Genet. 19, 340–347 (1998).

    Article  CAS  Google Scholar 

  53. Kudoh, S.N. & Taguchi, T. A simple exploratory algorithm for the accurate and fast detection of spontaneous synaptic events. Biosens. Bioelectron. 17, 773–782 (2002).

    Article  CAS  Google Scholar 

  54. Chung, C., Deak, F. & Kavalali, E.T. Molecular substrates mediating lanthanide-evoked neurotransmitter release in central synapses. J. Neurophysiol. 100, 2089–2100 (2008).

    Article  CAS  Google Scholar 

  55. Traynelis, S.F., Silver, R.A. & Cull-Candy, S.G. Estimated conductance of glutamate receptor channels activated during EPSCs at the cerebellar mossy fiber–granule cell synapse. Neuron 11, 279–289 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all members of the S.G.C.-C./M.F. laboratory for invaluable discussions. We are grateful to L. Kelly and A.V. Stempel for help during the early stages of the project and to I. Coombs for assistance with molecular biology. M. Yamasaki and M. Watanabe (Hokkaido University Graduate School of Medicine) generously shared unpublished data with us. We thank G. Szabó (Institute of Experimental Medicine) for GAD65-eGFP mice, kindly provided by M. Häusser (Wolfson Institute, University College London), and M. Hastings (Medical Research Council, Laboratory of Molecular Biology) for stargazer mice. This work was supported by a Wellcome Trust Programme Grant (S.G.C.-C. and M.F.) and a Medical Research Council Programme Grant (S.G.C.-C. and M.F.). C.B. was supported by a Marie Curie Intra-European Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were performed by C.B. (stellate cell recordings), D. Studniarczyk (granule cell recordings) and D. Soto (tsA201 cell and stellate cell recordings). M.F., C.B., D. Soto and D. Studniarczyk analyzed the data. S.G.C.-C. and M.F. supervised the project. All of the authors contributed to the design and interpretation of experiments. C.B., M.F. and S.G.C.-C. wrote the paper.

Corresponding authors

Correspondence to Mark Farrant or Stuart G Cull-Candy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1, 2 and Supplementary Tables 1–3 (PDF 205 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bats, C., Soto, D., Studniarczyk, D. et al. Channel properties reveal differential expression of TARPed and TARPless AMPARs in stargazer neurons. Nat Neurosci 15, 853–861 (2012). https://doi.org/10.1038/nn.3107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing