Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

miR-7a regulation of Pax6 controls spatial origin of forebrain dopaminergic neurons

Abstract

In the postnatal and adult mouse forebrain, a mosaic of spatially separated neural stem cells along the lateral wall of the ventricles generates defined types of olfactory bulb neurons. To understand the mechanisms underlying the regionalization of the stem cell pool, we focused on the transcription factor Pax6, a determinant of the dopaminergic phenotype in this system. We found that, although Pax6 mRNA was transcribed widely along the ventricular walls, Pax6 protein was restricted to the dorsal aspect. This dorsal restriction was a result of inhibition of protein expression by miR-7a, a microRNA (miRNA) that was expressed in a gradient opposing Pax6. In vivo inhibition of miR-7a in Pax6-negative regions of the lateral wall induced Pax6 protein expression and increased dopaminergic neurons in the olfactory bulb. These findings establish miRNA-mediated fine-tuning of protein expression as a mechanism for controlling neuronal stem cell diversity and, consequently, neuronal phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Discrepancy between expression of Pax6 promoter activity and protein along the lateral wall of the lateral ventricle.
Figure 2: Fate of dorsal and lateral neural progenitors in the olfactory bulb.
Figure 3: Pax6 expression is post-transcriptionally inhibited in a dorso-ventral gradient via its 3′ UTR.
Figure 4: Identification of miR-7a as a potential regulator of Pax6.
Figure 5: miR-7a controls Pax6 expression through its 3′ UTR in vivo.
Figure 6: De-repression of Pax6 protein expression by miR-7a inhibition in the lateral PVZ favors a dopaminergic phenotype in the olfactory bulb.

Similar content being viewed by others

References

  1. Alonso, M. et al. Turning astrocytes from the rostral migratory stream into neurons: a role for the olfactory sensory organ. J. Neurosci. 28, 11089–11102 (2008).

    Article  CAS  Google Scholar 

  2. Whitman, M.C. & Greer, C.A. Adult neurogenesis and the olfactory system. Prog. Neurobiol. 89, 162–175 (2009).

    Article  Google Scholar 

  3. Merkle, F.T., Mirzadeh, Z. & Alvarez-Buylla, A. Mosaic organization of neural stem cells in the adult brain. Science 317, 381–384 (2007).

    Article  CAS  Google Scholar 

  4. Kelsch, W., Mosley, C.P., Lin, C.W. & Lois, C. Distinct mammalian precursors are committed to generate neurons with defined dendritic projection patterns. PLoS Biol. 5, e300 (2007).

    Article  Google Scholar 

  5. Ihrie, R.A. et al. Persistent sonic hedgehog signaling in adult brain determines neural stem cell positional identity. Neuron 71, 250–262 (2011).

    Article  CAS  Google Scholar 

  6. Brill, M.S. et al. A dlx2- and pax6-dependent transcriptional code for periglomerular neuron specification in the adult olfactory bulb. J. Neurosci. 28, 6439–6452 (2008).

    Article  CAS  Google Scholar 

  7. Hack, M.A. et al. Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat. Neurosci. 8, 865–872 (2005).

    Article  CAS  Google Scholar 

  8. Kohwi, M., Osumi, N., Rubenstein, J.L. & Alvarez-Buylla, A. Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the olfactory bulb. J. Neurosci. 25, 6997–7003 (2005).

    Article  CAS  Google Scholar 

  9. Ninkovic, J. et al. The transcription factor Pax6 regulates survival of dopaminergic olfactory bulb neurons via crystallin alphaA. Neuron 68, 682–694 (2010).

    Article  CAS  Google Scholar 

  10. Dellovade, T.L., Pfaff, D.W. & Schwanzel-Fukuda, M. Olfactory bulb development is altered in small-eye (Sey) mice. J. Comp. Neurol. 402, 402–418 (1998).

    Article  CAS  Google Scholar 

  11. Pasquinelli, A.E., Hunter, S. & Bracht, J. MicroRNAs: a developing story. Curr. Opin. Genet. Dev. 15, 200–205 (2005).

    Article  CAS  Google Scholar 

  12. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  Google Scholar 

  13. Bhattacharyya, S.N., Habermacher, R., Martine, U., Closs, E.I. & Filipowicz, W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125, 1111–1124 (2006).

    Article  CAS  Google Scholar 

  14. Inui, M., Martello, G. & Piccolo, S. MicroRNA control of signal transduction. Nat. Rev. Mol. Cell Biol. 11, 252–263 (2010).

    Article  CAS  Google Scholar 

  15. Johnston, R.J. & Hobert, O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426, 845–849 (2003).

    Article  CAS  Google Scholar 

  16. Tyas, D.A. et al. Functional conservation of Pax6 regulatory elements in humans and mice demonstrated with a novel transgenic reporter mouse. BMC Dev. Biol. 6, 21 (2006).

    Article  Google Scholar 

  17. Boutin, C., Diestel, S., Desoeuvre, A., Tiveron, M.C. & Cremer, H. Efficient in vivo electroporation of the postnatal rodent forebrain. PLoS ONE 3, e1883 (2008).

    Article  Google Scholar 

  18. Boutin, C. et al. NeuroD1 induces terminal neuronal differentiation in olfactory neurogenesis. Proc. Natl. Acad. Sci. USA 107, 1201–1206 (2010).

    Article  CAS  Google Scholar 

  19. Fernández, M.E., Croce, S., Boutin, C., Cremer, H. & Raineteau, O. Targeted electroporation of defined lateral ventricular walls: a novel and rapid method to study fate specification during postnatal forebrain neurogenesis. Neural Dev. 6, 13 (2011).

    Article  Google Scholar 

  20. Mignone, F., Gissi, C., Liuni, S. & Pesole, G. Untranslated regions of mRNAs. Genome Biol. 3, S0004 (2002).

    Article  Google Scholar 

  21. Filipowicz, W., Bhattacharyya, S.N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9, 102–114 (2008).

    Article  CAS  Google Scholar 

  22. Chen, J.A. et al. Mir-17-3p controls spinal neural progenitor patterning by regulating Olig2/Irx3 cross-repressive loop. Neuron 69, 721–735 (2011).

    Article  CAS  Google Scholar 

  23. Cheng, L.C., Pastrana, E., Tavazoie, M. & Doetsch, F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat. Neurosci. 12, 399–408 (2009).

    Article  CAS  Google Scholar 

  24. Gao, F.B. Context-dependent functions of specific microRNAs in neuronal development. Neural Dev. 5, 25 (2010).

    Article  Google Scholar 

  25. Schratt, G.M. et al. A brain-specific microRNA regulates dendritic spine development. Nature 439, 283–289 (2006).

    Article  CAS  Google Scholar 

  26. Doxakis, E. Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153. J. Biol. Chem. 285, 12726–12734 (2010).

    Article  CAS  Google Scholar 

  27. Junn, E. et al. Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc. Natl. Acad. Sci. USA 106, 13052–13057 (2009).

    Article  CAS  Google Scholar 

  28. Ebert, M.S. & Sharp, P.A. Emerging roles for natural microRNA sponges. Curr. Biol. 20, R858–R861 (2010).

    Article  CAS  Google Scholar 

  29. Loya, C.M., Lu, C.S., Van Vactor, D. & Fulga, T.A. Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nat. Methods 6, 897–903 (2009).

    Article  CAS  Google Scholar 

  30. De Pietri Tonelli, D. et al. miRNAs are essential for survival and differentiation of newborn neurons, but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135, 3911–3921 (2008).

    Article  CAS  Google Scholar 

  31. Zhao, C., Sun, G., Li, S. & Shi, Y. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat. Struct. Mol. Biol. 16, 365–371 (2009).

    Article  CAS  Google Scholar 

  32. Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735–739 (2002).

    Article  CAS  Google Scholar 

  33. Barkai, N. & Shilo, B.Z. Robust generation and decoding of morphogen gradients. Cold Spring Harb. Perspect. Biol. 1, a001990 (2009).

    Article  Google Scholar 

  34. Rogers, K.W. & Schier, A.F. Morphogen gradients: from generation to interpretation. Annu. Rev. Cell Dev. Biol. 27, 377–407 (2011).

    Article  CAS  Google Scholar 

  35. Sousa, V.H. & Fishell, G. Sonic hedgehog functions through dynamic changes in temporal competence in the developing forebrain. Curr. Opin. Genet. Dev. 20, 391–399 (2010).

    Article  CAS  Google Scholar 

  36. Imitola, J. et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell–derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc. Natl. Acad. Sci. USA 101, 18117–18122 (2004).

    Article  CAS  Google Scholar 

  37. Yoo, A.S. et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476, 228–231 (2011).

    Article  CAS  Google Scholar 

  38. Morin, X., Jaouen, F. & Durbec, P. Control of planar divisions by the G-protein regulator LGN maintains progenitors in the chick neuroepithelium. Nat. Neurosci. 10, 1440–1448 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Price (University of Edinburgh) for tissue from PAX6-GFP mice, D. van Vector (Harvard Medical School) for miR-7a sponge plasmid, U. Bissels (Miltenyi Biotec) for advice on luciferase assays, Y. Manhoun for help with deep-sequencing data analyses, A. Barani (Precym platform of Centre d'Océanologie de Marseille) for fluorescence-activated cell sorting, J. Ninkovic for helpful tips on antibody labeling and X. Morin (Ecole Normale Superieure) for plasmids. We acknowledge the expertise of V. Magnone and K. Lebrigand (Functional Genomics Platform of Nice Sophia Antipolis), and R. Waldmann and L.-E. Zaragosi for fruitful discussions. We thank A. Bosio, R. Kelly and M.C. Tiveron for critical reading of the manuscript. This work was supported by funds from the Agence National de la Recherche (ANR, FORDOPA), Foundation pour la Recherche Médicale (Label Equipe FRM), Fondation de France and the European Commission (Marie-Curie: ITN AXREGEN and IAPP DopaNew) to H.C. P.B. was supported by Région PACA, CG06 and by grants from ANR, Vaincre la Mucoviscidose, Association pour la Recherche sur le Cancer and Institut National du Cancer.

Author information

Authors and Affiliations

Authors

Contributions

A.d.C. and N.C. designed and conducted experiments, and wrote the manuscript. P.F. and P.B. contributed miRNA expression data. M.G. performed molecular cloning. C.B. designed experiments and performed miRNA studies. H.C. designed the research and wrote the manuscript.

Corresponding authors

Correspondence to Nathalie Coré or Harold Cremer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Table 1 (PDF 764 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Chevigny, A., Coré, N., Follert, P. et al. miR-7a regulation of Pax6 controls spatial origin of forebrain dopaminergic neurons. Nat Neurosci 15, 1120–1126 (2012). https://doi.org/10.1038/nn.3142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing