Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cooperation of Syd-1 with Neurexin synchronizes pre- with postsynaptic assembly

Abstract

Synapse formation and maturation requires bidirectional communication across the synaptic cleft. The trans-synaptic Neurexin-Neuroligin complex can bridge this cleft, and severe synapse assembly deficits are found in Drosophila melanogaster neuroligin (Nlg1, dnlg1) and neurexin (Nrx-1, dnrx) mutants. We show that the presynaptic active zone protein Syd-1 interacts with Nrx-1 to control synapse formation at the Drosophila neuromuscular junction. Mutants in Syd-1 (RhoGAP100F, dsyd-1), Nrx-1 and Nlg1 shared active zone cytomatrix defects, which were nonadditive. Syd-1 and Nrx-1 formed a complex in vivo, and Syd-1 was important for synaptic clustering and immobilization of Nrx-1. Consequently, postsynaptic clustering of Nlg1 was affected in Syd-1 mutants, and in vivo glutamate receptor incorporation was changed in Syd-1, Nrx-1 and Nlg1 mutants. Stabilization of nascent Syd-1–Liprin-α (DLiprin-α) clusters, important to initialize active zone formation, was Nlg1 dependent. Thus, cooperation between Syd-1 and Nrx-1–Nlg1 seems to orchestrate early assembly processes between pre- and postsynaptic membranes, promoting avidity of newly forming synaptic scaffolds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Double mutants analysis of Nrx-1, Nlg1 and Syd-1.
Figure 2: Comparison of active zone ultrastructure for Nrx-1, Nlg1 and Syd-1 mutants.
Figure 3: Reduced endogenous Nrx-1 and Nlg1 clusters at Syd-1 mutant NMJs.
Figure 4: Biochemical and cell biological analysis of Syd-1–Nrx-1 complex.
Figure 5: Syd-1 influences localization and FRAP of Nrx-1 at NMJ.
Figure 6: In vivo imaging of Liprin-α–Syd-1 cluster dynamics at Nlg1 mutant NMJs.
Figure 7: Analysis of in vivo glutamate receptor incorporation in Nlg1, Nrx-1 and Syd-1 mutants.

Similar content being viewed by others

References

  1. Owald, D. & Sigrist, S.J. Assembling the presynaptic active zone. Curr. Opin. Neurobiol. 19, 311–318 (2009).

    Article  CAS  Google Scholar 

  2. Fejtova, A. & Gundelfinger, E.D. Molecular organization and assembly of the presynaptic active zone of neurotransmitter release. Results Probl. Cell Differ. 43, 49–68 (2006).

    Article  CAS  Google Scholar 

  3. Jin, Y. & Garner, C.C. Molecular mechanisms of presynaptic differentiation. Annu. Rev. Cell Dev. Biol. 24, 237–262 (2008).

    Article  CAS  Google Scholar 

  4. Collins, C.A. & DiAntonio, A. Synaptic development: insights from Drosophila. Curr. Opin. Neurobiol. 17, 35–42 (2007).

    Article  CAS  Google Scholar 

  5. Owald, D. et al. A Syd-1 homologue regulates pre- and postsynaptic maturation in Drosophila. J. Cell Biol. 188, 565–579 (2010).

    Article  CAS  Google Scholar 

  6. Schmid, A. et al. Activity-dependent site-specific changes of glutamate receptor composition in vivo. Nat. Neurosci. 11, 659–666 (2008).

    Article  CAS  Google Scholar 

  7. Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 657–669 (2000).

    Article  CAS  Google Scholar 

  8. Graf, E.R., Zhang, X., Jin, S.X., Linhoff, M.W. & Craig, A.M. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119, 1013–1026 (2004).

    Article  CAS  Google Scholar 

  9. Südhof, T.C. Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455, 903–911 (2008).

    Article  Google Scholar 

  10. Varoqueaux, F. et al. Neuroligins determine synapse maturation and function. Neuron 51, 741–754 (2006).

    Article  CAS  Google Scholar 

  11. Li, J., Ashley, J., Budnik, V. & Bhat, M.A. Crucial role of Drosophila neurexin in proper active zone apposition to postsynaptic densities, synaptic growth, and synaptic transmission. Neuron 55, 741–755 (2007).

    Article  CAS  Google Scholar 

  12. Banovic, D. et al. Drosophila neuroligin 1 promotes growth and postsynaptic differentiation at glutamatergic neuromuscular junctions. Neuron 66, 724–738 (2010).

    Article  CAS  Google Scholar 

  13. Sun, M. et al. Neuroligin 2 is required for synapse development and function at the Drosophila neuromuscular junction. J. Neurosci. 31, 687–699 (2011).

    Article  CAS  Google Scholar 

  14. Fairless, R. et al. Polarized targeting of neurexins to synapses is regulated by their C-terminal sequences. J. Neurosci. 28, 12969–12981 (2008).

    Article  CAS  Google Scholar 

  15. Dai, Y. et al. SYD-2 Liprin-alpha organizes presynaptic active zone formation through ELKS. Nat. Neurosci. 9, 1479–1487 (2006).

    Article  CAS  Google Scholar 

  16. Patel, M.R. et al. Hierarchical assembly of presynaptic components in defined C. elegans synapses. Nat. Neurosci. 9, 1488–1498 (2006).

    Article  CAS  Google Scholar 

  17. Patel, M.R. & Shen, K. RSY-1 is a local inhibitor of presynaptic assembly in C. elegans. Science 323, 1500–1503 (2009).

    Article  CAS  Google Scholar 

  18. Kaufmann, N., DeProto, J., Ranjan, R., Wan, H. & Van Vactor, D. Drosophila liprin-alpha and the receptor phosphatase Dlar control synapse morphogenesis. Neuron 34, 27–38 (2002).

    Article  CAS  Google Scholar 

  19. Hell, S.W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    Article  CAS  Google Scholar 

  20. Fouquet, W. et al. Maturation of active zone assembly by Drosophila Bruchpilot. J. Cell Biol. 186, 129–145 (2009).

    Article  CAS  Google Scholar 

  21. Marrus, S.B. & DiAntonio, A. Preferential localization of glutamate receptors opposite sites of high presynaptic release. Curr. Biol. 14, 924–931 (2004).

    Article  CAS  Google Scholar 

  22. Kittel, R.J. et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312, 1051–1054 (2006).

    Article  CAS  Google Scholar 

  23. Hallermann, S. et al. Naked dense bodies provoke depression. J. Neurosci. 30, 14340–14345 (2010).

    Article  CAS  Google Scholar 

  24. Sun, M. et al. Genetic interaction between Neurexin and CAKI/CMG is important for synaptic function in Drosophila neuromuscular junction. Neurosci. Res. 64, 362–371 (2009).

    Article  CAS  Google Scholar 

  25. Lenfant, N. et al. A genome-wide study of PDZ-domain interactions in C. elegans reveals a high frequency of non-canonical binding. BMC Genomics 11, 671 (2010).

    Article  CAS  Google Scholar 

  26. Swan, L.E. et al. Complex interaction of Drosophila GRIP PDZ domains and Echinoid during muscle morphogenesis. EMBO J. 25, 3640–3651 (2006).

    Article  CAS  Google Scholar 

  27. Miller, K.E. et al. Direct observation demonstrates that Liprin-alpha is required for trafficking of synaptic vesicles. Curr. Biol. 15, 684–689 (2005).

    Article  CAS  Google Scholar 

  28. Spangler, S.A. & Hoogenraad, C.C. Liprin-alpha proteins: scaffold molecules for synapse maturation. Biochem. Soc. Trans. 35, 1278–1282 (2007).

    Article  CAS  Google Scholar 

  29. Rasse, T.M. et al. Glutamate receptor dynamics organizing synapse formation in vivo. Nat. Neurosci. 8, 898–905 (2005).

    Article  CAS  Google Scholar 

  30. Sigrist, S.J., Thiel, P.R., Reiff, D.F. & Schuster, C.M. The postsynaptic glutamate receptor subunit DGluR-IIA mediates long-term plasticity in Drosophila. J. Neurosci. 22, 7362–7372 (2002).

    Article  CAS  Google Scholar 

  31. Lisé, M.F. & El-Husseini, A. The neuroligin and neurexin families: from structure to function at the synapse. Cell. Mol. Life Sci. 63, 1833–1849 (2006).

    Article  Google Scholar 

  32. Jamain, S. et al. Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proc. Natl. Acad. Sci. USA 105, 1710–1715 (2008).

    Article  CAS  Google Scholar 

  33. Taru, H. & Jin, Y. The Liprin homology domain is essential for the homomeric interaction of SYD-2/Liprin-alpha protein in presynaptic assembly. J. Neurosci. 31, 16261–16268 (2011).

    Article  CAS  Google Scholar 

  34. Wei, Z. et al. Liprin-mediated large signaling complex organization revealed by the liprin-alpha/CASK and liprin-alpha/liprin-beta complex structures. Mol. Cell 43, 586–598 (2011).

    Article  CAS  Google Scholar 

  35. Nieratschker, V. et al. Bruchpilot in ribbon-like axonal agglomerates, behavioral defects, and early death in SRPK79D kinase mutants of Drosophila. PLoS Genet. 5, e1000700 (2009).

    Article  Google Scholar 

  36. Johnson, E.L. III, Fetter, R.D. & Davis, G.W. Negative regulation of active zone assembly by a newly identified SR protein kinase. PLoS Biol. 7, e1000193 (2009).

    Article  Google Scholar 

  37. Futai, K. et al. Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95-neuroligin. Nat. Neurosci. 10, 186–195 (2007).

    Article  CAS  Google Scholar 

  38. Wittenmayer, N. et al. Postsynaptic Neuroligin1 regulates presynaptic maturation. Proc. Natl. Acad. Sci. USA 106, 13564–13569 (2009).

    Article  CAS  Google Scholar 

  39. Chia, P.H., Patel, M.R. & Shen, K. NAB-1 instructs synapse assembly by linking adhesion molecules and F-actin to active zone proteins. Nat. Neurosci. 15, 234–242 (2012).

    Article  CAS  Google Scholar 

  40. van Roessel, P., Elliott, D.A., Robinson, I.M., Prokop, A. & Brand, A.H. Independent regulation of synaptic size and activity by the anaphase-promoting complex. Cell 119, 707–718 (2004).

    Article  CAS  Google Scholar 

  41. Schmid, A. et al. Non-NMDA-type glutamate receptors are essential for maturation but not for initial assembly of synapses at Drosophila neuromuscular junctions. J. Neurosci. 26, 11267–11277 (2006).

    Article  CAS  Google Scholar 

  42. Mondin, M. et al. Neurexin-neuroligin adhesions capture surface-diffusing AMPA receptors through PSD-95 scaffolds. J. Neurosci. 31, 13500–13515 (2011).

    Article  CAS  Google Scholar 

  43. Heine, M. et al. Activity-independent and subunit-specific recruitment of functional AMPA receptors at neurexin/neuroligin contacts. Proc. Natl. Acad. Sci. USA 105, 20947–20952 (2008).

    Article  CAS  Google Scholar 

  44. Aberle, H. et al. Wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33, 545–558 (2002).

    Article  CAS  Google Scholar 

  45. Huttner, W.B., Schiebler, W., Greengard, P. & De Camilli, P. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J. Cell Biol. 96, 1374–1388 (1983).

    Article  CAS  Google Scholar 

  46. Guarente, L. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 101, 181–191 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank C. Quentin and A. Stawrakakis for excellent technical assistance and R. Jahn for the use of equipment. T. Andlauer and U. Thomas critically read the manuscript. We further thank M. Bhat (University of North Carolina) and W. Xie (Southeast University, Nanjing) for generously sharing reagents. This work was supported by grants from the Deutsche Forschungsgemeinschaft to S.J.S. (Exc 257, SI849/2-1 and 2-2, TP A16/SFB 551, TP B23/SFB581, TP A3 and A6/SFB 958) and H.A. (AB 116/3-2). M.H. is funded by a European Research Council Starting Grant (Astrofunc).

Author information

Authors and Affiliations

Authors

Contributions

D.O., O.K. and S.J.S. designed research. D.O., O.K., V.K.G., D.B., H.D., W.F., C.W., S.M. and E.R. performed experiments. D.O., O.K., V.K.G., D.B., H.D., W.F., C.W., S.M., H.A. and S.J.S. analyzed data. M.H. and S.E. shared protocols, reagents and advice. All authors commented on the paper. D.O., O.K. and S.J.S. wrote the paper.

Corresponding author

Correspondence to Stephan J Sigrist.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 14838 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owald, D., Khorramshahi, O., Gupta, V. et al. Cooperation of Syd-1 with Neurexin synchronizes pre- with postsynaptic assembly. Nat Neurosci 15, 1219–1226 (2012). https://doi.org/10.1038/nn.3183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing