Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Calcium entry induces mitochondrial oxidant stress in vagal neurons at risk in Parkinson's disease

Abstract

Mitochondrial oxidant stress is widely viewed as being critical to pathogenesis in Parkinson's disease. But the origins of this stress are poorly defined. One possibility is that it arises from the metabolic demands associated with regenerative activity. To test this hypothesis, we characterized neurons in the dorsal motor nucleus of the vagus (DMV), a population of cholinergic neurons that show signs of pathology in the early stages of Parkinson's disease, in mouse brain slices. DMV neurons were slow, autonomous pacemakers with broad spikes, leading to calcium entry that was weakly buffered. Using a transgenic mouse expressing a redox-sensitive optical probe targeted to the mitochondrial matrix, we found that calcium entry during pacemaking created a basal mitochondrial oxidant stress. Knocking out DJ-1 (also known as PARK7), a gene associated with early-onset Parkinson's disease, exacerbated this stress. These results point to a common mechanism underlying mitochondrial oxidant stress in Parkinson's disease and a therapeutic strategy to ameliorate it.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Autonomous discharge in cholinergic neurons of the DMV.
Figure 2: Role of sodium currents in the pacemaking of cholinergic DMV neurons.
Figure 3: Calcium currents during the pacemaking cycle in DMV neurons.
Figure 4: 2PLSM calcium imaging reveals that calcium dynamics are dominated by spike-associated influx.
Figure 5: Contribution of Cav1 channels to discharge patterns and ambient calcium levels in DMV neurons.
Figure 6: DMV neurons have a low endogenous buffering capacity relative to dopaminergic VTA neurons.
Figure 7: Mitochondria in DMV neurons are normally oxidized and are reduced by pre-incubation in isradipine.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. de Lau, L.M. & Breteler, M.M. Epidemiology of Parkinson's disease. Lancet Neurol. 5, 525–535 (2006).

    Article  Google Scholar 

  2. Biskup, S. & Moore, D.J. Detrimental deletions: mitochondria, aging and Parkinson's disease. Bioessays 28, 963–967 (2006).

    Article  CAS  Google Scholar 

  3. Lees, A.J., Hardy, J. & Revesz, T. Parkinson's disease. Lancet 373, 2055–2066 (2009).

    Article  CAS  Google Scholar 

  4. Schapira, A.H. Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol. 7, 97–109 (2008).

    Article  CAS  Google Scholar 

  5. Albin, R.L., Young, A.B. & Penney, J.B. The functional anatomy of disorders of the basal ganglia. Trends Neurosci. 18, 63–64 (1995).

    Article  CAS  Google Scholar 

  6. Jellinger, K.A. A critical reappraisal of current staging of Lewy-related pathology in human brain. Acta Neuropathol. 116, 1–16 (2008).

    Article  CAS  Google Scholar 

  7. Braak, H., Ghebremedhin, E., Rub, U., Bratzke, H. & Del Tredici, K. Stages in the development of Parkinson's disease–related pathology. Cell Tissue Res. 318, 121–134 (2004).

    Article  Google Scholar 

  8. Dickson, D.W. et al. Evidence that incidental Lewy body disease is pre-symptomatic Parkinson's disease. Acta Neuropathol. 115, 437–444 (2008).

    Article  Google Scholar 

  9. Surmeier, D.J., Guzman, J.N., Sanchez-Padilla, J. & Goldberg, J.A. The origins of oxidant stress in Parkinson's disease and therapeutic strategies. Antioxid. Redox Signal. 14, 1289–1301 (2011).

    Article  CAS  Google Scholar 

  10. Sulzer, D. Multiple hit hypotheses for dopamine neuron loss in Parkinson's disease. Trends Neurosci. 30, 244–250 (2007).

    Article  CAS  Google Scholar 

  11. Grace, A.A. & Bunney, B.S. The control of firing pattern in nigral dopamine neurons: single spike firing. J. Neurosci. 4, 2866–2876 (1984).

    Article  CAS  Google Scholar 

  12. Guzman, J.N. et al. Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468, 696–700 (2010).

    Article  CAS  Google Scholar 

  13. Nedergaard, S., Flatman, J.A. & Engberg, I. Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. J. Physiol. (Lond.) 466, 727–747 (1993).

    CAS  Google Scholar 

  14. Puopolo, M., Raviola, E. & Bean, B.P. Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. J. Neurosci. 27, 645–656 (2007).

    Article  CAS  Google Scholar 

  15. Foehring, R.C., Zhang, X.F., Lee, J.C. & Callaway, J.C. Endogenous calcium buffering capacity of substantia nigral dopamine neurons. J. Neurophysiol. 102, 2326–2333 (2009).

    Article  CAS  Google Scholar 

  16. Ilijic, E., Guzman, J.N. & Surmeier, D.J. The L-type channel antagonist isradipine is neuroprotective in a mouse model of Parkinson's disease. Neurobiol. Dis. 43, 364–371 (2011).

    Article  CAS  Google Scholar 

  17. Natale, G., Pasquali, L., Ruggieri, S., Paparelli, A. & Fornai, F. Parkinson's disease and the gut: a well known clinical association in need of an effective cure and explanation. Neurogastroenterol. Motil. 20, 741–749 (2008).

    Article  CAS  Google Scholar 

  18. Miller, V.M. et al. Dorsal motor nucleus of vagus protein aggregates in Lewy body disease with autonomic dysfunction. Brain Res. 1286, 165–173 (2009).

    Article  CAS  Google Scholar 

  19. Gao, H. et al. Morphological and electrophysiological features of motor neurons and putative interneurons in the dorsal vagal complex of rats and mice. Brain Res. 1291, 40–52 (2009).

    Article  CAS  Google Scholar 

  20. Mo, Z.L., Katafuchi, T., Muratani, H. & Hori, T. Effects of vasopressin and angiotensin II on neurones in the rat dorsal motor nucleus of the vagus in vitro. J. Physiol. (Lond.) 458, 561–577 (1992).

    Article  CAS  Google Scholar 

  21. Travagli, R.A. & Gillis, R.A. Hyperpolarization-activated currents, IH and IKIR, in rat dorsal motor nucleus of the vagus neurons in vitro. J. Neurophysiol. 71, 1308–1317 (1994).

    Article  CAS  Google Scholar 

  22. Bean, B.P. The action potential in mammalian central neurons. Nat. Rev. Neurosci. 8, 451–465 (2007).

    Article  CAS  Google Scholar 

  23. Khaliq, Z.M. & Bean, B.P. Pacemaking in dopaminergic ventral tegmental area neurons: depolarizing drive from background and voltage-dependent sodium conductances. J. Neurosci. 30, 7401–7413 (2010).

    Article  CAS  Google Scholar 

  24. Lu, B. et al. The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Cell 129, 371–383 (2007).

    Article  CAS  Google Scholar 

  25. Putzier, I., Kullmann, P.H., Horn, J.P. & Levitan, E.S. Cav1.3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons. J. Neurosci. 29, 15414–15419 (2009).

    Article  CAS  Google Scholar 

  26. Guzman, J.N., Sanchez-Padilla, J., Chan, C.S. & Surmeier, D.J. Robust pacemaking in substantia nigra dopaminergic neurons. J. Neurosci. 29, 11011–11019 (2009).

    Article  CAS  Google Scholar 

  27. Koschak, A. et al. alpha 1D (Cav1.3) subunits can form L-type Ca2+ channels activating at negative voltages. J. Biol. Chem. 276, 22100–22106 (2001).

    Article  CAS  Google Scholar 

  28. Hocherman, S.D., Werman, R. & Yarom, Y. An analysis of the long-lasting after-hyperpolarization of guinea-pig vagal motoneurones. J. Physiol. (Lond.) 456, 325–349 (1992).

    Article  CAS  Google Scholar 

  29. Sah, P. & McLachlan, E.M. Ca2+-activated K+ currents underlying the afterhyperpolarization in guinea pig vagal neurons: a role for Ca2+-activated Ca2+ release. Neuron 7, 257–264 (1991).

    Article  CAS  Google Scholar 

  30. von Lewinski, F. & Keller, B.U. Ca2+, mitochondria and selective motoneuron vulnerability: implications for ALS. Trends Neurosci. 28, 494–500 (2005).

    Article  CAS  Google Scholar 

  31. de León, M., Covenas, R., Narvaez, J.A., Aguirre, J.A. & Gonzalez-Baron, S. Distribution of parvalbumin immunoreactivity in the cat brain stem. Brain Res. Bull. 32, 639–646 (1993).

    Article  Google Scholar 

  32. Maravall, M., Mainen, Z.F., Sabatini, B.L. & Svoboda, K. Estimating intracellular calcium concentrations and buffering without wavelength ratioing. Biophys. J. 78, 2655–2667 (2000).

    Article  CAS  Google Scholar 

  33. Neher, E. & Augustine, G.J. Calcium gradients and buffers in bovine chromaffin cells. J. Physiol. (Lond.) 450, 273–301 (1992).

    Article  CAS  Google Scholar 

  34. Helmchen, F., Imoto, K. & Sakmann, B. Ca2+ buffering and action potential–evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys. J. 70, 1069–1081 (1996).

    Article  CAS  Google Scholar 

  35. Lips, M.B. & Keller, B.U. Activity-related calcium dynamics in motoneurons of the nucleus hypoglossus from mouse. J. Neurophysiol. 82, 2936–2946 (1999).

    Article  CAS  Google Scholar 

  36. Lang, D.G. & Ritchie, A.K. Tetraethylammonium blockade of apamin-sensitive and insensitive Ca2+-activated K+ channels in a pituitary cell line. J. Physiol. (Lond.) 425, 117–132 (1990).

    Article  CAS  Google Scholar 

  37. Kahle, P.J., Waak, J. & Gasser, T. DJ-1 and prevention of oxidative stress in Parkinson's disease and other age-related disorders. Free Radic. Biol. Med. 47, 1354–1361 (2009).

    Article  CAS  Google Scholar 

  38. Mercuri, N.B., Bonci, A., Calabresi, P., Stefani, A. & Bernardi, G. Properties of the hyperpolarization-activated cation current Ih in rat midbrain dopaminergic neurons. Eur. J. Neurosci. 7, 462–469 (1995).

    Article  CAS  Google Scholar 

  39. Helton, T.D., Xu, W. & Lipscombe, D. Neuronal L-type calcium channels open quickly and are inhibited slowly. J. Neurosci. 25, 10247–10251 (2005).

    Article  CAS  Google Scholar 

  40. Dooley, C.T. et al. Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J. Biol. Chem. 279, 22284–22293 (2004).

    Article  CAS  Google Scholar 

  41. Nicholls, D.G. & Budd, S.L. Mitochondria and neuronal survival. Physiol. Rev. 80, 315–360 (2000).

    Article  CAS  Google Scholar 

  42. Yi, M., Weaver, D. & Hajnoczky, G. Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J. Cell Biol. 167, 661–672 (2004).

    Article  CAS  Google Scholar 

  43. Brown, G.C. Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem. J. 284, 1–13 (1992).

    Article  CAS  Google Scholar 

  44. Bohnen, N.I. & Albin, R.L. The cholinergic system and Parkinson disease. Behav. Brain Res. 221, 564–573 (2011).

    Article  CAS  Google Scholar 

  45. Meissner, W.G. et al. Priorities in Parkinson's disease research. Nat. Rev. Drug Discov. 10, 377–393 (2011).

    Article  CAS  Google Scholar 

  46. Becker, C., Jick, S.S. & Meier, C.R. Use of antihypertensives and the risk of Parkinson disease. Neurology 70, 1438–1444 (2008).

    Article  CAS  Google Scholar 

  47. Ritz, B. et al. L-type calcium channel blockers and Parkinson disease in Denmark. Ann. Neurol. 67, 600–606 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Pasternak, B. et al. Use of calcium channel blockers and Parkinson's disease. Am. J. Epidemiol. 175, 627–635 (2012).

    Article  Google Scholar 

  49. Marras, C. et al. Dihydropyridine calcium channel blockers and the progression of parkinsonism. Ann. Neurol. 71, 362–369 (2012).

    Article  CAS  Google Scholar 

  50. Hirsch, E.C. & Hunot, S. Neuroinflammation in Parkinson's disease: a target for neuroprotection? Lancet Neurol. 8, 382–397 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Chen, S. Ulrich, K. Saporito and D. Ren for their expert technical help. We thank R. Miller for valuable discussions. This work was supported by grants from the Hartman Foundation, the IDP Foundation, the Picower Foundation, the US National Institutes of Health (P50 NS047085 and T32 NS041234) and the Department of Defense (W81XWH-11-1-051) to D.J.S.

Author information

Authors and Affiliations

Authors

Contributions

J.A.G. designed and conducted the experiments and analyzed the data. J.N.G. conducted some of the control roGFP experiments. C.M.E. and E.I. conducted the histological experiments. J.K. and J.S.-P. generated the CMV–mito-roGFP and DJ-1−/− mice. D.J.S. was responsible for the overall direction of the experiments. J.A.G. and D.J.S. prepared the manuscript and illustrations.

Corresponding author

Correspondence to D James Surmeier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 (PDF 1030 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldberg, J., Guzman, J., Estep, C. et al. Calcium entry induces mitochondrial oxidant stress in vagal neurons at risk in Parkinson's disease. Nat Neurosci 15, 1414–1421 (2012). https://doi.org/10.1038/nn.3209

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3209

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing