Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

REST-dependent epigenetic remodeling promotes the developmental switch in synaptic NMDA receptors

Abstract

NMDA receptors (NMDARs) are critical to synaptogenesis, neural circuitry and higher cognitive functions. A hallmark feature of NMDARs is an early postnatal developmental switch from those containing primarily GluN2B to primarily GluN2A subunits. Although the switch in phenotype has been an area of intense interest for two decades, the mechanisms that trigger it and the link between experience and the switch are unclear. Here we show a new role for the transcriptional repressor REST in the developmental switch of synaptic NMDARs. REST is activated at a critical window of time and acts via epigenetic remodeling to repress Grin2b expression and alter NMDAR properties at rat hippocampal synapses. Knockdown of REST in vivo prevented the decline in GluN2B and developmental switch in NMDARs. Maternal deprivation impaired REST activation and acquisition of the mature NMDAR phenotype. Thus, REST is essential for experience-dependent fine-tuning of genes involved in synaptic plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: REST increases transiently, is recruited to and coincides with epigenetic marks of repression at the Grin2b promoter during rat hippocampal postnatal development.
Figure 2: Transient increase in REST precedes the switch in NMDAR phenotype in rat dentate gyrus.
Figure 3: RNAi-mediated knockdown of REST increases Grin2b mRNA and alters NMDAR properties.
Figure 4: Rest knockdown prevents acquisition of the mature NMDAR phenotype.
Figure 5: Maternal deprivation disrupts the increase in REST, epigenetic remodeling and decrease in GluN2B during postnatal development.
Figure 6: Maternal deprivation impairs acquisition of the mature NMDAR phenotype at synapses.

Similar content being viewed by others

References

  1. Cull-Candy, S.G. & Leszkiewicz, D.N. Role of distinct NMDA receptor subtypes at central synapses. Sci. STKE 2004, re16 (2004).

    PubMed  Google Scholar 

  2. Paoletti, P. & Neyton, J. NMDA receptor subunits: function and pharmacology. Curr. Opin. Pharmacol. 7, 39–47 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Quinlan, E.M., Olstein, D.H. & Bear, M.F. Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development. Proc. Natl. Acad. Sci. USA 96, 12876–12880 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sheng, M., Cummings, J., Roldan, L.A., Jan, Y.N. & Jan, L.Y. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368, 144–147 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Williams, K., Russell, S.L., Shen, Y.M. & Molinoff, P.B. Developmental switch in the expression of NMDA receptors occurs in vivo and in vitro. Neuron 10, 267–278 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Yashiro, K. & Philpot, B.D. Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 55, 1081–1094 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sobczyk, A., Scheuss, V. & Svoboda, K. NMDA receptor subunit-dependent [Ca2+] signaling in individual hippocampal dendritic spines. J. Neurosci. 25, 6037–6046 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hall, B.J., Ripley, B. & Ghosh, A. NR2B signaling regulates the development of synaptic AMPA receptor current. J. Neurosci. 27, 13446–13456 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gray, J.A. et al. Distinct modes of AMPA receptor suppression at developing synapses by GluN2A and GluN2B: single-cell NMDA receptor subunit deletion in vivo. Neuron 71, 1085–1101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee, M.C., Yasuda, R. & Ehlers, M.D. Metaplasticity at single glutamatergic synapses. Neuron 66, 859–870 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu, Z. et al. Metaplastic regulation of long-term potentiation/long-term depression threshold by activity-dependent changes of NR2A/NR2B ratio. J. Neurosci. 29, 8764–8773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. von Engelhardt, J. et al. Contribution of hippocampal and extra-hippocampal NR2B-containing NMDA receptors to performance on spatial learning tasks. Neuron 60, 846–860 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Espinosa, J.S., Wheeler, D.G., Tsien, R.W. & Luo, L. Uncoupling dendrite growth and patterning: single-cell knockout analysis of NMDA receptor 2B. Neuron 62, 205–217 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barria, A. & Malinow, R. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron 48, 289–301 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Borrelli, E., Nestler, E.J., Allis, C.D. & Sassone-Corsi, P. Decoding the epigenetic language of neuronal plasticity. Neuron 60, 961–974 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Levenson, J.M. & Sweatt, J.D. Epigenetic mechanisms in memory formation. Nat. Rev. Neurosci. 6, 108–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Ballas, N., Grunseich, C., Lu, D.D., Speh, J.C. & Mandel, G. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121, 645–657 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Ballas, N. & Mandel, G. The many faces of REST oversee epigenetic programming of neuronal genes. Curr. Opin. Neurobiol. 15, 500–506 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Schoenherr, C.J. & Anderson, D.J. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267, 1360–1363 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Qiang, M., Rani, C.S. & Ticku, M.K. Neuron-restrictive silencer factor regulates the N-methyl-D-aspartate receptor 2B subunit gene in basal and ethanol-induced gene expression in fetal cortical neurons. Mol. Pharmacol. 67, 2115–2125 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Sasner, M. & Buonanno, A. Distinct N-methyl-D-aspartate receptor 2B subunit gene sequences confer neural and developmental specific expression. J. Biol. Chem. 271, 21316–21322 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Andres, M.E. et al. CoREST: a functional corepressor required for regulation of neural-specific gene expression. Proc. Natl. Acad. Sci. USA 96, 9873–9878 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bruce, A.W. et al. Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proc. Natl. Acad. Sci. USA 101, 10458–10463 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ooi, L. & Wood, I.C. Chromatin crosstalk in development and disease: lessons from REST. Nat. Rev. Genet. 8, 544–554 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Barria, A. & Malinow, R. Subunit-specific NMDA receptor trafficking to synapses. Neuron 35, 345–353 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Bellone, C. & Nicoll, R.A. Rapid bidirectional switching of synaptic NMDA receptors. Neuron 55, 779–785 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Matta, J.A., Ashby, M.C., Sanz-Clemente, A., Roche, K.W. & Isaac, J.T. mGluR5 and NMDA receptors drive the experience- and activity-dependent NMDA receptor NR2B to NR2A subunit switch. Neuron 70, 339–351 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sanz-Clemente, A., Matta, J.A., Isaac, J.T. & Roche, K.W. Casein kinase 2 regulates the NR2 subunit composition of synaptic NMDA receptors. Neuron 67, 984–996 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mierau, S.B., Meredith, R.M., Upton, A.L. & Paulsen, O. Dissociation of experience-dependent and -independent changes in excitatory synaptic transmission during development of barrel cortex. Proc. Natl. Acad. Sci. USA 101, 15518–15523 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Carmignoto, G. & Vicini, S. Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. Science 258, 1007–1011 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Ku, H.Y., Huang, Y.F., Chao, P.H., Huang, C.C. & Hsu, K.S. Neonatal isolation delays the developmental decline of long-term depression in the CA1 region of rat hippocampus. Neuropsychopharmacology 33, 2847–2859 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Nase, G., Weishaupt, J., Stern, P., Singer, W. & Monyer, H. Genetic and epigenetic regulation of NMDA receptor expression in the rat visual cortex. Eur. J. Neurosci. 11, 4320–4326 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Philpot, B.D., Sekhar, A.K., Shouval, H.Z. & Bear, M.F. Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron 29, 157–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Yu, H.B., Johnson, R., Kunarso, G. & Stanton, L.W. Coassembly of REST and its cofactors at sites of gene repression in embryonic stem cells. Genome Res. 21, 1284–1293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Roopra, A., Qazi, R., Schoenike, B., Daley, T.J. & Morrison, J.F. Localized domains of G9a-mediated histone methylation are required for silencing of neuronal genes. Mol. Cell 14, 727–738 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Bruce, A.W. et al. Functional diversity for REST (NRSF) is defined by in vivo binding affinity hierarchies at the DNA sequence level. Genome Res. 19, 994–1005 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bernstein, B.E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Noh, K.M. et al. Repressor element-1 silencing transcription factor (REST)-dependent epigenetic remodeling is critical to ischemia-induced neuronal death. Proc. Natl. Acad. Sci. USA 109, E962–E971 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yeo, M., Berglund, K., Augustine, G. & Liedtke, W. Novel repression of Kcc2 transcription by REST-RE-1 controls developmental switch in neuronal chloride. J. Neurosci. 29, 14652–14662 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Monyer, H., Burnashev, N., Laurie, D.J., Sakmann, B. & Seeburg, P.H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12, 529–540 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, D., Diorio, J., Day, J.C., Francis, D.D. & Meaney, M.J. Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nat. Neurosci. 3, 799–806 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Uchida, S. et al. Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents. J. Neurosci. 30, 15007–15018 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Desai, A., Turetsky, D., Vasudevan, K. & Buonanno, A. Analysis of transcriptional regulatory sequences of the N-methyl-D-aspartate receptor 2A subunit gene in cultured cortical neurons and transgenic mice. J. Biol. Chem. 277, 46374–46384 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Huang, Y., Myers, S.J. & Dingledine, R. Transcriptional repression by REST: recruitment of Sin3A and histone deacetylase to neuronal genes. Nat. Neurosci. 2, 867–872 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Prybylowski, K. et al. Relationship between availability of NMDA receptor subunits and their expression at the synapse. J. Neurosci. 22, 8902–8910 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guardavaccaro, D. et al. Control of chromosome stability by the beta-TrCP-REST-Mad2 axis. Nature 452, 365–369 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Westbrook, T.F. et al. SCFbeta-TRCP controls oncogenic transformation and neural differentiation through REST degradation. Nature 452, 370–374 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang, Z. et al. Deubiquitylase HAUSP stabilizes REST and promotes maintenance of neural progenitor cells. Nat. Cell Biol. 13, 142–152 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Meaney, M.J. & Ferguson-Smith, A.C. Epigenetic regulation of the neural transcriptome: the meaning of the marks. Nat. Neurosci. 13, 1313–1318 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Huot, R.L., Thrivikraman, K.V., Meaney, M.J. & Plotsky, P.M. Development of adult ethanol preference and anxiety as a consequence of neonatal maternal separation in Long Evans rats and reversal with antidepressant treatment. Psychopharmacology (Berl.) 158, 366–373 (2001).

    Article  CAS  Google Scholar 

  51. Paoletti, P., Ascher, P. & Neyton, J. High-affinity zinc inhibition of NMDA NR1–NR2A receptors. J. Neurosci. 17, 5711–5725 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pfaffl, M.W., Horgan, G.W. & Dempfle, L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30, e36 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants to R.S.Z. (R01 NS46742 and NS20752) and P.E.C. (R01 MH081935) and support from the F.M. Kirby Foundation. A.E.C. was supported by a Ruth L Kirschstein Award from the US National Institute of Neurological Disorders and Stroke (F32NS071821). We thank K.-M. Noh (Albert Einstein College of Medicine) for providing the shRNA REST lentiviral construct, and A. Etgen and all the members of the Zukin and Castillo laboratories for their constructive comments on the data and the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.R.-R. designed and performed all the biochemical experiments and analyzed the results. M.J.C. performed biochemical experiments. A.E.C. designed and performed all the electrophysiological experiments and analyzed the results. P.E.C. and R.S.Z. helped guide the research. A.R.-R., A.E.C., P.E.C. and R.S.Z. interpreted all the results and wrote the paper.

Corresponding authors

Correspondence to Pablo E Castillo or R Suzanne Zukin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12, Supplementary Tables 1–11 (PDF 2066 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodenas-Ruano, A., Chávez, A., Cossio, M. et al. REST-dependent epigenetic remodeling promotes the developmental switch in synaptic NMDA receptors. Nat Neurosci 15, 1382–1390 (2012). https://doi.org/10.1038/nn.3214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3214

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing