Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GKAP orchestrates activity-dependent postsynaptic protein remodeling and homeostatic scaling

Abstract

How does chronic activity modulation lead to global remodeling of proteins at synapses and synaptic scaling? Here we report that guanylate kinase–associated protein (GKAP; also known as SAPAP), a scaffolding molecule linking NMDA receptor–PSD-95 to Shank-Homer complexes, acts in these processes. Overexcitation removes GKAP from synapses via the ubiquitin-proteasome system, whereas inactivity induces synaptic accumulation of GKAP in rat hippocampal neurons. Bidirectional changes in synaptic GKAP amounts are controlled by specific CaMKII isoforms coupled to different Ca2+ channels. CaMKIIα activated by the NMDA receptor phosphorylates GKAP Ser54 to induce polyubiquitination of GKAP. In contrast, CaMKIIβ activation via L-type voltage-dependent calcium channels promotes GKAP recruitment by phosphorylating GKAP Ser340 and Ser384, which uncouples GKAP from myosin Va motor complex. Overexpressing GKAP turnover mutants not only hampers activity-dependent remodeling of PSD-95 and Shank but also blocks bidirectional synaptic scaling. Therefore, activity-dependent turnover of PSD proteins orchestrated by GKAP is critical for homeostatic plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CaMKII activity is required for both Bic-induced removal and TTX-dependent accumulation of GKAP and PSD-95 at synapses.
Figure 2: CaMKII isoform-specific regulation of activity-dependent GKAP turnover.
Figure 3: CaMKII activity is required for the degradation of GKAP by the UPS.
Figure 4: Phosphorylation of GKAP by CaMKII prevents PSD-95 interaction.
Figure 5: Phosphorylation of Ser54 in GKAP induces polyubiquitination and removal of GKAP from synapses.
Figure 6: Role of MVa-DLC and CaMKII phosphorylation in GKAP accumulation at synapses.
Figure 7: GKAP ΔR1 mutant blocks activity-dependent remodeling of PSD proteins.
Figure 8: GKAP turnover is critical for bidirectional homeostatic synaptic scaling.

Similar content being viewed by others

References

  1. Collingridge, G.L., Isaac, J.T. & Wang, Y.T. Receptor trafficking and synaptic plasticity. Nat. Rev. Neurosci. 5, 952–962 (2004).

    CAS  PubMed  Google Scholar 

  2. Turrigiano, G.G. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135, 422–435 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pozo, K. & Goda, Y. Unraveling mechanisms of homeostatic synaptic plasticity. Neuron 66, 337–351 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ehlers, M.D. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat. Neurosci. 6, 231–242 (2003).

    CAS  PubMed  Google Scholar 

  5. Kim, E. et al. GKAP, a novel synaptic protein that interacts with the guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering molecules. J. Cell Biol. 136, 669–678 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Takeuchi, M. et al. SAPAPs. A family of PSD-95/SAP90-associated proteins localized at postsynaptic density. J. Biol. Chem. 272, 11943–11951 (1997).

    CAS  PubMed  Google Scholar 

  7. Satoh, K. et al. DAP-1, a novel protein that interacts with the guanylate kinase-like domains of hDLG and PSD-95. Genes Cells 2, 415–424 (1997).

    CAS  PubMed  Google Scholar 

  8. Naisbitt, S. et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23, 569–582 (1999).

    CAS  PubMed  Google Scholar 

  9. Naisbitt, S. et al. Interaction of the postsynaptic density-95/guanylate kinase domain-associated protein complex with a light chain of myosin-V and dynein. J. Neurosci. 20, 4524–4534 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sheng, M. & Hoogenraad, C.C. The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu. Rev. Biochem. 76, 823–847 (2007).

    CAS  PubMed  Google Scholar 

  11. Sala, C. et al. Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31, 115–130 (2001).

    CAS  PubMed  Google Scholar 

  12. Romorini, S. et al. A functional role of postsynaptic density-95-guanylate kinase-associated protein complex in regulating Shank assembly and stability to synapses. J. Neurosci. 24, 9391–9404 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hudmon, A. & Schulman, H. Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu. Rev. Biochem. 71, 473–510 (2002).

    CAS  PubMed  Google Scholar 

  14. Lisman, J., Yasuda, R. & Raghavachari, S. Mechanisms of CaMKII action in long-term potentiation. Nat. Rev. Neurosci. 13, 169–182 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Braun, A.P. & Schulman, H. The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu. Rev. Physiol. 57, 417–445 (1995).

    CAS  PubMed  Google Scholar 

  16. Bingol, B. et al. Autophosphorylated CaMKIIalpha acts as a scaffold to recruit proteasomes to dendritic spines. Cell 140, 567–578 (2010).

    CAS  PubMed  Google Scholar 

  17. Fink, C.C. et al. Selective regulation of neurite extension and synapse formation by the beta but not the alpha isoform of CaMKII. Neuron 39, 283–297 (2003).

    CAS  PubMed  Google Scholar 

  18. Okamoto, K., Narayanan, R., Lee, S.H., Murata, K. & Hayashi, Y. The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure. Proc. Natl. Acad. Sci. USA 104, 6418–6423 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Puram, S.V. et al. A CaMKIIbeta signaling pathway at the centrosome regulates dendrite patterning in the brain. Nat. Neurosci. 14, 973–983 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Borgesius, N.Z. et al. betaCaMKII plays a nonenzymatic role in hippocampal synaptic plasticity and learning by targeting alphaCaMKII to synapses. J. Neurosci. 31, 10141–10148 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Thiagarajan, T.C., Lindskog, M., Malgaroli, A. & Tsien, R.W. LTP and adaptation to inactivity: overlapping mechanisms and implications for metaplasticity. Neuropharmacology 52, 156–175 (2007).

    CAS  PubMed  Google Scholar 

  22. Thiagarajan, T.C., Piedras-Renteria, E.S. & Tsien, R.W. alpha- and betaCaMKII. Inverse regulation by neuronal activity and opposing effects on synaptic strength. Neuron 36, 1103–1114 (2002).

    CAS  PubMed  Google Scholar 

  23. Groth, R.D., Lindskog, M., Thiagarajan, T.C., Li, L. & Tsien, R.W. Beta Ca2+/CaM-dependent kinase type II triggers upregulation of GluA1 to coordinate adaptation to synaptic inactivity in hippocampal neurons. Proc. Natl. Acad. Sci. USA 108, 828–833 (2011).

    CAS  PubMed  Google Scholar 

  24. Thiagarajan, T.C., Lindskog, M. & Tsien, R.W. Adaptation to synaptic inactivity in hippocampal neurons. Neuron 47, 725–737 (2005).

    CAS  PubMed  Google Scholar 

  25. Kopito, R.R. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 10, 524–530 (2000).

    CAS  PubMed  Google Scholar 

  26. Omkumar, R.V., Kiely, M.J., Rosenstein, A.J., Min, K.T. & Kennedy, M.B. Identification of a phosphorylation site for calcium/calmodulindependent protein kinase II in the NR2B subunit of the N-methyl-D-aspartate receptor. J. Biol. Chem. 271, 31670–31678 (1996).

    CAS  PubMed  Google Scholar 

  27. Songyang, Z. et al. A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol. Cell. Biol. 16, 6486–6493 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Trinidad, J.C., Thalhammer, A., Specht, C.G., Schoepfer, R. & Burlingame, A.L. Phosphorylation state of postsynaptic density proteins. J. Neurochem. 92, 1306–1316 (2005).

    CAS  PubMed  Google Scholar 

  29. Lo, K.W. et al. The 8-kDa dynein light chain binds to p53-binding protein 1 and mediates DNA damage-induced p53 nuclear accumulation. J. Biol. Chem. 280, 8172–8179 (2005).

    CAS  PubMed  Google Scholar 

  30. Passafaro, M., Sala, C., Niethammer, M. & Sheng, M. Microtubule binding by CRIPT and its potential role in the synaptic clustering of PSD-95. Nat. Neurosci. 2, 1063–1069 (1999).

    CAS  PubMed  Google Scholar 

  31. Kim, M.J. et al. Synaptic accumulation of PSD-95 and synaptic function regulated by phosphorylation of serine-295 of PSD-95. Neuron 56, 488–502 (2007).

    CAS  PubMed  Google Scholar 

  32. Beique, J.C., Na, Y., Kuhl, D., Worley, P.F. & Huganir, R.L. Arc-dependent synapse-specific homeostatic plasticity. Proc. Natl. Acad. Sci. USA 108, 816–821 (2011).

    CAS  PubMed  Google Scholar 

  33. Seeburg, D.P., Feliu-Mojer, M., Gaiottino, J., Pak, D.T. & Sheng, M. Critical role of CDK5 and Polo-like kinase 2 in homeostatic synaptic plasticity during elevated activity. Neuron 58, 571–583 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Evers, D.M. et al. Plk2 attachment to NSF induces homeostatic removal of GluA2 during chronic overexcitation. Nat. Neurosci. 13, 1199–1207 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Shepherd, J.D. et al. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52, 475–484 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pak, D.T. & Sheng, M. Targeted protein degradation and synapse remodeling by an inducible protein kinase. Science 302, 1368–1373 (2003).

    CAS  PubMed  Google Scholar 

  37. Sheng, M. & Kim, E. The postsynaptic organization of synapses. Cold Spring Harb. Perspect. Biol. 3, a005678 (2011).

    PubMed  PubMed Central  Google Scholar 

  38. Funke, L., Dakoji, S. & Bredt, D.S. Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Annu. Rev. Biochem. 74, 219–245 (2005).

    CAS  PubMed  Google Scholar 

  39. Bingol, B. & Sheng, M. Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease. Neuron 69, 22–32 (2011).

    CAS  PubMed  Google Scholar 

  40. DiAntonio, A. & Hicke, L. Ubiquitin-dependent regulation of the synapse. Annu. Rev. Neurosci. 27, 223–246 (2004).

    CAS  PubMed  Google Scholar 

  41. Kuriu, T., Inoue, A., Bito, H., Sobue, K. & Okabe, S. Differential control of postsynaptic density scaffolds via actin-dependent and -independent mechanisms. J. Neurosci. 26, 7693–7706 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sutton, M.A. et al. Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell 125, 785–799 (2006).

    CAS  PubMed  Google Scholar 

  43. Brocke, L., Chiang, L.W., Wagner, P.D. & Schulman, H. Functional implications of the subunit composition of neuronal CaM kinase II. J. Biol. Chem. 274, 22713–22722 (1999).

    CAS  PubMed  Google Scholar 

  44. Honkura, N., Matsuzaki, M., Noguchi, J., Ellis-Davies, G.C. & Kasai, H. The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 57, 719–729 (2008).

    CAS  PubMed  Google Scholar 

  45. Tippens, A.L. et al. Ultrastructural evidence for pre- and postsynaptic localization of Cav1.2 L-type Ca2+ channels in the rat hippocampus. J. Comp. Neurol. 506, 569–583 (2008).

    CAS  PubMed  Google Scholar 

  46. Correia, S.S. et al. Motor protein-dependent transport of AMPA receptors into spines during long-term potentiation. Nat. Neurosci. 11, 457–466 (2008).

    CAS  PubMed  Google Scholar 

  47. Guillaud, L., Wong, R. & Hirokawa, N. Disruption of KIF17-Mint1 interaction by CaMKII-dependent phosphorylation: a molecular model of kinesin-cargo release. Nat. Cell Biol. 10, 19–29 (2008).

    CAS  PubMed  Google Scholar 

  48. Hung, A.Y., Sung, C.C., Brito, I.L. & Sheng, M. Degradation of postsynaptic scaffold GKAP and regulation of dendritic spine morphology by the TRIM3 ubiquitin ligase in rat hippocampal neurons. PLoS ONE 5, e9842 (2010).

    PubMed  PubMed Central  Google Scholar 

  49. Roselli, F., Livrea, P. & Almeida, O.F. CDK5 is essential for soluble amyloid beta-induced degradation of GKAP and remodeling of the synaptic actin cytoskeleton. PLoS ONE 6, e23097 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Welch, J.M. et al. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature 448, 894–900 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lim, S. et al. Characterization of the Shank family of synaptic proteins. Multiple genes, alternative splicing, and differential expression in brain and development. J. Biol. Chem. 274, 29510–29518 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Q.-S. Liu for technical advice on electrophysiology, and A. Tamada and H. Kamiguchi (RIKEN Brain Science Institute) for providing MyoV expression vectors. This work was supported by US National Institutes of Health grant R01 MH078135 and Whitehall Foundation grant to S.H.L and by US National Institutes of Health grant R01 AG032320 to N.Z.G.

Author information

Authors and Affiliations

Authors

Contributions

S.M.S., N.Z., J.H. and S.H.L. conducted all experiments and analyzed the data. N.Z.G., D.T.S.P., M.S. and S.H.L. contributed to designing experiments and interpretation of the data. S.H.L. and M.S. wrote the manuscript.

Corresponding author

Correspondence to Sang H Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 (PDF 20973 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, S., Zhang, N., Hansen, J. et al. GKAP orchestrates activity-dependent postsynaptic protein remodeling and homeostatic scaling. Nat Neurosci 15, 1655–1666 (2012). https://doi.org/10.1038/nn.3259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3259

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing