Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Neurogliaform cells dynamically regulate somatosensory integration via synapse-specific modulation

Abstract

Despite the prevailing idea that neurogliaform cells produce a spatially unrestricted widespread inhibition, we demonstrate here that their activity attenuates thalamic-evoked feed-forward inhibition in layer IV barrel cortex but has no effect on feed-forward excitation. The result of this circuit selectivity is a dynamic regulation in the temporal window for integration of excitatory thalamic input, thus revealing a new role for neurogliaform cells in shaping sensory processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Layer IV NGFC activity inhibits the canonical thalamic-evoked FFI via GABAB receptor activation.
Figure 2: NGFC activity does not affect thalamic-evoked excitatory input onto layer IV fast-spiking interneurons or stellate cells.

Similar content being viewed by others

References

  1. Cruikshank, S.J., Lewis, T.J. & Connors, B.W. Nat. Neurosci. 10, 462–468 (2007).

    Article  CAS  Google Scholar 

  2. Gabernet, L., Jadhav, S.P., Feldman, D.E., Carandini, M. & Scanziani, M. Neuron 48, 315–327 (2005).

    Article  CAS  Google Scholar 

  3. Bruno, R.M. & Sakmann, B. Science 312, 1622–1627 (2006).

    Article  CAS  Google Scholar 

  4. Lee, S., Hjerling-Leffler, J., Zagha, E., Fishell, G. & Rudy, B. J. Neurosci. 30, 16796–16808 (2010).

    Article  CAS  Google Scholar 

  5. Olah, S. et al. Nature 461, 1278–1281 (2009).

    Article  CAS  Google Scholar 

  6. Tamas, G., Lorincz, A., Simon, A. & Szabadics, J. Science 299, 1902–1905 (2003).

    Article  CAS  Google Scholar 

  7. Karayannis, T. et al. J. Neurosci. 30, 9898–9909 (2010).

    Article  CAS  Google Scholar 

  8. Szabadics, J., Tamas, G. & Soltesz, I. Proc. Natl. Acad. Sci. USA 104, 14831–14836 (2007).

    Article  CAS  Google Scholar 

  9. Manko, M., Bienvenu, T.C., Dalezios, Y. & Capogna, M. Physiol. 590, 5611–5627 (2012).

    Article  CAS  Google Scholar 

  10. Chittajallu, R. & Isaac, J.T. Nat. Neurosci. 13, 1240–1248 (2010).

    Article  CAS  Google Scholar 

  11. Gonzalez-Burgos, G. Adv. Pharmacol. 58, 175–204 (2010).

    Article  CAS  Google Scholar 

  12. Schwenk, J. et al. Nature 465, 231–235 (2010).

    Article  CAS  Google Scholar 

  13. Pan, B.X. et al. Neuron 61, 917–929 (2009).

    Article  CAS  Google Scholar 

  14. Vitellaro-Zuccarello, L., Calvaresi, N. & De Biasi, S. Cell Tissue Res. 313, 245–257 (2003).

    Article  CAS  Google Scholar 

  15. Fino, E., Packer, A.M. & Yuste, R. Neuroscientist doi:10.1177/1073858412456743 (24 August 2012).

  16. Agmon, A. & Connors, B.W. Neuroscience 41, 365–379 (1991).

    Article  CAS  Google Scholar 

  17. Xu, Q., Tam, M. & Anderson, S.A. J. Comp. Neurol. 506, 16–29 (2008).

    Article  CAS  Google Scholar 

  18. Belachew, S. et al. J. Cell Biol. 161, 169–186 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Isaac for comments, and M. Craig for the IGOR procedures used to automate analyses of the modeling data. This work was supported by the National Institute of Child Health and Human Development and National Institute of Neurological Disorders and Stroke Intramural Programs.

Author information

Authors and Affiliations

Authors

Contributions

R.C. conducted the experiments and data analyses. R.C., K.A.P. and C.J.M. designed the experiments. R.C. and C.J.M. wrote the manuscript.

Corresponding author

Correspondence to Chris J McBain.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 3194 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chittajallu, R., Pelkey, K. & McBain, C. Neurogliaform cells dynamically regulate somatosensory integration via synapse-specific modulation. Nat Neurosci 16, 13–15 (2013). https://doi.org/10.1038/nn.3284

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3284

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing