Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Epigenetics and persistent memory: implications for reconsolidation and silent extinction beyond the zero

Abstract

Targeting epigenetic mechanisms during initial learning or memory retrieval can lead to persistent memory. Retrieval induces plasticity that may result in reconsolidation of the original memory, in which critical molecular events are needed to stabilize the memory, or extinction, in which new learning during the retrieval trial creates an additional memory that reflects the changed environmental contingencies. A canonical feature of extinction is that the original response is temporarily suppressed, but returns under various conditions. These characteristics have defined whether a given manipulation alters extinction (when persistence does not occur) or reconsolidation (when persistence does occur). A problem arises with these behavioral definitions when considering the potential for persistent memory of extinction. Recent studies have found that epigenetic modulation of memory processes leads to surprisingly robust and persistent extinction. We discuss evidence from behavioral epigenetic approaches that forces a re-evaluation of widely used behavioral definitions of extinction and reconsolidation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enhancing histone acetylation promotes initial memory consolidation.
Figure 2: Enhancing histone acetylation generates a persistent form of extinction.

Similar content being viewed by others

References

  1. Maren, S. Seeking a spotless mind: extinction, deconsolidation and erasure of fear memory. Neuron 70, 830–845 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Quirk, G.J. et al. Erasing fear memories with extinction training. J. Neurosci. 30, 14993–14997 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Torregrossa, M.M. & Taylor, J.R. Learning to forget: manipulating extinction and reconsolidation processes to treat addiction. Psychopharmacology (Berl). published online, doi:10.1007/s00213-012-2750-9 (26 May 2012).

  4. Alberini, C.M. The role of protein synthesis during the labile phases of memory: revisiting the skepticism. Neurobiol. Learn. Mem. 89, 234–246 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Davis, M., Myers, K.M., Chhatwal, J. & Ressler, K.J. Pharmacological treatments that facilitate extinction of fear: relevance to psychotherapy. NeuroRx 3, 82–96 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McGaugh, J.L. & Roozendaal, B. Drug enhancement of memory consolidation: historical perspective and neurobiological implications. Psychopharmacology (Berl.) 202, 3–14 (2009).

    Article  CAS  Google Scholar 

  7. Qi, Z. & Gold, P.E. Intrahippocampal infusions of anisomycin produce amnesia: contribution of increased release of norepinephrine, dopamine and acetylcholine. Learn. Mem. 16, 308–314 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Delamater, A.R. Issues in the extinction of specific stimulus-outcome associations in Pavlovian conditioning. Behav. Processes 90, 9–19 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lattal, K.M. & Lattal, K.A. Facets of Pavlovian and operant extinction. Behav. Processes 90, 1–8 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Radulovic, J. & Tronson, N.C. Molecular specificity of multiple hippocampal processes governing fear extinction. Rev. Neurosci. 21, 1–17 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stafford, J.M. & Lattal, K.M. Is an epigenetic switch the key to persistent extinction? Neurobiol. Learn. Mem. 96, 35–40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rescorla, R.A. Spontaneous recovery. Learn. Mem. 11, 501–509 (2004).

    Article  PubMed  Google Scholar 

  13. Pavlov, I.P. Conditioned Reflexes: an Investigation of the Physiological Activity of the Cerebral Cortex (Oxford University Press, London, 1927).

  14. Brogden, W.J., Lipman, E.A. & Culler, E. The role of incentive in conditioning and extinction. Am. J. Psychol. 51, 109–117 (1938).

    Article  Google Scholar 

  15. Reynolds, G.S. Operant extinction near zero. J. Exp. Anal. Behav. 7, 173–176 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rescorla, R.A. & Wagner, A.R. A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. Classical Conditioning II: Current research and Theory (eds. A.H. Black & W.F. Prokasy) 64–99 (Appleton Century Crofts, New York, 1972).

  17. Leung, H.T. & Westbrook, R.F. Spontaneous recovery of extinguished fear responses deepens their extinction: a role for error-correction mechanisms. J. Exp. Psychol. Anim. Behav. Process. 34, 461–474 (2008).

    Article  PubMed  Google Scholar 

  18. Denniston, J.C., Chang, R.C. & Miller, R.R. Massive extinction treatment attenuates the renewal effect. Learn. Motiv. 34, 68–86 (2003).

    Article  Google Scholar 

  19. Rescorla, R.A. Deepened extinction from compound stimulus presentation. J. Exp. Psychol. Anim. Behav. Process. 32, 135–144 (2006).

    Article  PubMed  Google Scholar 

  20. Lester, B.M. et al. Behavioral epigenetics. Ann. NY Acad. Sci. 1226, 14–33 (2011).

    Article  PubMed  Google Scholar 

  21. Katada, S., Imhof, A. & Sassone-Corsi, P. Connecting threads: epigenetics and metabolism. Cell 148, 24–28 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Tronson, N.C., Corcoran, K.A., Jovasevic, V. & Radulovic, J. Fear conditioning and extinction: emotional states encoded by distinct signaling pathways. Trends Neurosci. 35, 145–155 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Franklin, T.B., Saab, B.J. & Mansuy, I.M. Neural mechanisms of stress resilience and vulnerability. Neuron 75, 747–761 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Zovkic, I.B. & Sweatt, J.D. Epigenetic mechanisms in learned fear: implications for PTSD. Neuropsychopharmacology 38, 77–93 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Day, J.J. & Sweatt, J.D. Epigenetic treatments for cognitive impairments. Neuropsychopharmacology 37, 247–260 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Jakovcevski, M. & Akbarian, S. Epigenetic mechanisms in neurological disease. Nat. Med. 18, 1194–1204 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Turner, B.M. Cellular memory and the histone code. Cell 111, 285–291 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Peixoto, L. & Abel, T. The role of histone acetylation in memory formation and cognitive impairments. Neuropsychopharmacology 38, 62–76 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, L. et al. Chronic cocaine-induced H3 acetylation and transcriptional activation of CaMKIIalpha in the nucleus accumbens is critical for motivation for drug reinforcement. Neuropsychopharmacology 35, 913–928 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Kilgore, M. et al. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer′s disease. Neuropsychopharmacology 35, 870–880 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Stefanko, D.P., Barrett, R.M., Ly, A.R., Reolon, G.K. & Wood, M.A. Modulation of long-term memory for object recognition via HDAC inhibition. Proc. Natl. Acad. Sci. USA 106, 9447–9452 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McQuown, S.C. et al. HDAC3 is a critical negative regulator of long-term memory formation. J. Neurosci. 31, 764–774 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Vecsey, C.G. et al. Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J. Neurosci. 27, 6128–6140 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lesburguères, E. et al. Early tagging of cortical networks is required for the formation of enduring associative memory. Science 331, 924–928 (2011).

    Article  PubMed  Google Scholar 

  35. McQuown, S.C. & Wood, M.A. HDAC3 and the molecular brake pad hypothesis. Neurobiol. Learn. Mem. 96, 27–34 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vogel-Ciernia, A. & Wood, M.A. Molecular brake pad hypothesis: pulling off the brakes for emotional memory. Rev. Neurosci. published online, doi:10.1515/revneuro-2012-0050 (24 August 2012).

  37. Lattal, K.M., Barrett, R.M. & Wood, M.A. Systemic or intrahippocampal delivery of histone deacetylase inhibitors facilitates fear extinction. Behav. Neurosci. 121, 1125–1131 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bredy, T.W. et al. Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn. Mem. 14, 268–276 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Malvaez, M., Sanchis-Segura, C., Vo, D., Lattal, K.M. & Wood, M.A. Modulation of chromatin modification facilitates extinction of cocaine-induced conditioned place preference. Biol. Psychiatry 67, 36–43 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stafford, J.M., Raybuck, J.D., Ryabinin, A.E. & Lattal, K.M. Increasing histone acetylation in the hippocampus-infralimbic network enhances fear extinction. Biol. Psychiatry 72, 25–33 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Marek, R. et al. Paradoxical enhancement of fear extinction memory and synaptic plasticity by inhibition of the histone acetyltransferase p300. J. Neurosci. 31, 7486–7491 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wei, W. et al. p300/CBP-associated factor selectively regulates the extinction of conditioned fear. J. Neurosci. 32, 11930–11941 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bahari-Javan, S. et al. HDAC1 regulates fear extinction in mice. J. Neurosci. 32, 5062–5073 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Malvaez, M. et al. HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proc. Natl. Acad. Sci. USA doi:10.1073/pnas.1213364110 (in the press).

  45. Baker, K.D., McNally, G.P. & Richardson, R. D-cycloserine does not facilitate fear extinction by reducing conditioned stimulus processing or promoting conditioned inhibition to contextual cues. Learn. Mem. 19, 461–469 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Lee, J.L. Reconsolidation: maintaining memory relevance. Trends Neurosci. 32, 413–420 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kramár, E.A. et al. Synaptic evidence for the efficacy of spaced learning. Proc. Natl. Acad. Sci. USA 109, 5121–5126 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lynch, G., Kramar, E.A., Babayan, A.H., Rumbaugh, G. & Gall, C.M. Differences between synaptic plasticity thresholds result in new timing rules for maximizing long-term potentiation. Neuropharmacology 64, 27–36 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Lai, C.S., Franke, T.F. & Gan, W.B. Opposite effects of fear conditioning and extinction on dendritic spine remodeling. Nature 483, 87–91 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Lahm, A. et al. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc. Natl. Acad. Sci. USA 104, 17335–17340 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Bieszczad and M. Malvaez for helpful comments. Preparation of this manuscript was supported by grants from the US National Institutes of Health (DA018165, DA025922, DA031989, MH077111 and MH081004). The order of authorship was determined by lot.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K Matthew Lattal or Marcelo A Wood.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lattal, K., Wood, M. Epigenetics and persistent memory: implications for reconsolidation and silent extinction beyond the zero. Nat Neurosci 16, 124–129 (2013). https://doi.org/10.1038/nn.3302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3302

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing