Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields

Abstract

Linking neural microcircuit function to emergent properties of the mammalian brain requires fine-scale manipulation and measurement of neural activity during behavior, where each neuron's coding and dynamics can be characterized. We developed an optical method for simultaneous cellular-resolution stimulation and large-scale recording of neuronal activity in behaving mice. Dual-wavelength two-photon excitation allowed largely independent functional imaging with a green fluorescent calcium sensor (GCaMP3, λ = 920 ± 6 nm) and single-neuron photostimulation with a red-shifted optogenetic probe (C1V1, λ = 1,064 ± 6 nm) in neurons coexpressing the two proteins. We manipulated task-modulated activity in individual hippocampal CA1 place cells during spatial navigation in a virtual reality environment, mimicking natural place-field activity, or 'biasing', to reveal subthreshold dynamics. Notably, manipulating single place-cell activity also affected activity in small groups of other place cells that were active around the same time in the task, suggesting a functional role for local place cell interactions in shaping firing fields.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic for simultaneous cellular-resolution photostimulation and functional calcium-imaging in awake, behaving mice.
Figure 2: All-optical stimulation and recording of neural activity in awake mice.
Figure 3: Cellular-resolution photostimulation in awake mice.
Figure 4: Optical perturbation of a place cell during virtual navigation.
Figure 5: Low-power biasing to measure underlying dynamics in neurons and networks.

Similar content being viewed by others

References

  1. Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    CAS  PubMed  Google Scholar 

  2. Greenberg, D.S., Houweling, A.R. & Kerr, J.N. Population imaging of ongoing neuronal activity in the visual cortex of awake rats. Nat. Neurosci. 11, 749–751 (2008).

    CAS  PubMed  Google Scholar 

  3. Dombeck, D.A., Harvey, C.D., Tian, L., Looger, L.L. & Tank, D.W. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat. Neurosci. 13, 1433–1440 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Petreanu, L. et al. Activity in motor-sensory projections reveals distributed coding in somatosensation. Nature 489, 299–303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Adamantidis, A.R., Zhang, F., Aravanis, A.M., Deisseroth, K. & de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Tye, K.M. et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471, 358–362 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Carter, M.E. et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci. 13, 1526–1533 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Akerboom, J. et al. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front. Mol. Neurosci. 6, 2 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chang, Y.F., Arai, Y. & Nagai, T. Optogenetic activation during detector “dead time” enables compatible real-time fluorescence imaging. Neurosci. Res. 73, 341–347 (2012).

    PubMed  Google Scholar 

  10. Husson, S.J. et al. Optogenetic analysis of a nociceptor neuron and network reveals ion channels acting downstream of primary sensors. Curr. Biol. 22, 743–752 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin, J.Y., Lin, M.Z., Steinbach, P. & Tsien, R.Y. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys. J. 96, 1803–1814 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wilson, N.R., Runyan, C.A., Wang, F.L. & Sur, M. Division and subtraction by distinct cortical inhibitory networks in vivo. Nature 488, 343–348 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007).

    CAS  PubMed  Google Scholar 

  14. Guo, Z.V., Hart, A.C. & Ramanathan, S. Optical interrogation of neural circuits in Caenorhabditis elegans. Nat. Methods 6, 891–896 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rickgauer, J.P. & Tank, D.W. Two-photon excitation of channelrhodopsin-2 at saturation. Proc. Natl. Acad. Sci. USA 106, 15025–15030 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Andrasfalvy, B.K., Zemelman, B.V., Tang, J. & Vaziri, A. Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proc. Natl. Acad. Sci. USA 107, 11981–11986 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Papagiakoumou, E. et al. Scanless two-photon excitation of channelrhodopsin-2. Nat. Methods 7, 848–854 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Prakash, R. et al. Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat. Methods 9, 1171–1179 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Packer, A.M. et al. Two-photon optogenetics of dendritic spines and neural circuits. Nat. Methods 9, 1202–1205 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yaroslavsky, A.N. et al. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys. Med. Biol. 47, 2059–2073 (2002).

    CAS  PubMed  Google Scholar 

  21. Oheim, M., Beaurepaire, E., Chaigneau, E., Mertz, J. & Charpak, S. Two-photon microscopy in brain tissue: parameters influencing the imaging depth. J. Neurosci. Methods 111, 29–37 (2001).

    CAS  PubMed  Google Scholar 

  22. Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Oron, D., Tal, E. & Silberberg, Y. Scanningless depth-resolved microscopy. Opt. Express 13, 1468–1476 (2005).

    PubMed  Google Scholar 

  25. Zhu, G., van Howe, J., Durst, M., Zipfel, W. & Xu, C. Simultaneous spatial and temporal focusing of femtosecond pulses. Opt. Express 13, 2153–2159 (2005).

    PubMed  Google Scholar 

  26. Zimmermann, T., Rietdorf, J. & Pepperkok, R. Spectral imaging and its applications in live cell microscopy. FEBS Lett. 546, 87–92 (2003).

    CAS  PubMed  Google Scholar 

  27. Mattis, J. et al. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat. Methods 9, 159–172 (2012).

    CAS  Google Scholar 

  28. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10, 663–668 (2007).

    CAS  PubMed  Google Scholar 

  29. Aronov, D. & Tank, D.W. Engagement of the neural circuits underlying 2D spatial navigation in a rodent virtual reality system. Neuron 84, 442–456 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Harvey, C.D., Collman, F., Dombeck, D.A. & Tank, D.W. Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461, 941–946 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee, D., Lin, B.J. & Lee, A.K. Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior. Science 337, 849–853 (2012).

    CAS  PubMed  Google Scholar 

  32. Fenton, A.A. & Muller, R.U. Place cell discharge is extremely variable during individual passes of the rat through the firing field. Proc. Natl. Acad. Sci. USA 95, 3182–3187 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264–266 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kaifosh, P., Lovett-Barron, M., Turi, G.F., Reardon, T.R. & Losonczy, A. Septo-hippocampal GABAergic signaling across multiple modalities in awake mice. Nat. Neurosci. 16, 1182–1184 (2013).

    CAS  PubMed  Google Scholar 

  35. Lovett-Barron, M. et al. Dendritic inhibition in the hippocampus supports fear learning. Science 343, 857–863 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, T.W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. St-Pierre, F. et al. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat. Neurosci. 17, 884–889 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Grienberger, C., Chen, X. & Konnerth, A. NMDA receptor-dependent multidendrite Ca2+ spikes required for hippocampal burst firing in vivo. Neuron 81, 1274–1281 (2014).

    CAS  PubMed  Google Scholar 

  39. Papagiakoumou, E. et al. Functional patterned multiphoton excitation deep inside scattering tissue. Nat. Photonics 7, 274–278 (2013).

    CAS  Google Scholar 

  40. Losonczy, A., Zemelman, B.V., Vaziri, A. & Magee, J.C. Network mechanisms of theta related neuronal activity in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 13, 967–972 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dana, H. et al. Thy1-GCaMP6 transgenic mice for neuronal population imaging in vivo. PLoS ONE 9, e108697 (2014).

    PubMed  PubMed Central  Google Scholar 

  42. Amaral, D.G. & Witter, M.P. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31, 571–591 (1989).

    CAS  PubMed  Google Scholar 

  43. Deuchars, J. & Thomson, A.M. CA1 pyramid-pyramid connections in rat hippocampus in vitro: dual intracellular recordings with biocytin filling. Neuroscience 74, 1009–1018 (1996).

    CAS  PubMed  Google Scholar 

  44. Marshall, L. et al. Hippocampal pyramidal cell-interneuron spike transmission is frequency dependent and responsible for place modulation of interneuron discharge. J. Neurosci. 22, RC197 (2002).

    PubMed  PubMed Central  Google Scholar 

  45. Galarreta, M. & Hestrin, S. Spike transmission and synchrony detection in networks of GABAergic interneurons. Science 292, 2295–2299 (2001).

    CAS  PubMed  Google Scholar 

  46. Jonas, P., Bischofberger, J., Fricker, D. & Miles, R. Interneuron diversity series: fast in, fast out–temporal and spatial signal processing in hippocampal interneurons. Trends Neurosci. 27, 30–40 (2004).

    CAS  PubMed  Google Scholar 

  47. Freund, T.F. & Buzsaki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    CAS  PubMed  Google Scholar 

  48. Ko, H. et al. Functional specificity of local synaptic connections in neocortical networks. Nature 473, 87–91 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Royer, S. et al. Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat. Neurosci. 15, 769–775 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Briggman, K.L., Helmstaedter, M. & Denk, W. Wiring specificity in the direction-selectivity circuit of the retina. Nature 471, 183–188 (2011).

    CAS  PubMed  Google Scholar 

  51. Vaziri, A. & Emiliani, V. Reshaping the optical dimension in optogenetics. Curr. Opin. Neurobiol. 22, 128–137 (2012).

    CAS  PubMed  Google Scholar 

  52. Dana, H. & Shoham, S. Numerical evaluation of temporal focusing characteristics in transparent and scattering media. Opt. Express 19, 4937–4948 (2011).

    PubMed  Google Scholar 

  53. Grewe, B.F., Voigt, F.F., van't Hoff, M. & Helmchen, F. Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens. Biomed. Opt. Express 2, 2035–2046 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Pologruto, T.A., Sabatini, B.L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003).

    PubMed  PubMed Central  Google Scholar 

  55. Domnisoru, C., Kinkhabwala, A.A. & Tank, D.W. Membrane potential dynamics of grid cells. Nature 495, 199–204 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Harvey, C.D., Coen, P. & Tank, D.W. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484, 62–68 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zimmermann, T., Rietdorf, J., Girod, A., Georget, V. & Pepperkok, R. Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. FEBS Lett. 531, 245–249 (2002).

    CAS  PubMed  Google Scholar 

  58. Miri, A., Daie, K., Burdine, R.D., Aksay, E. & Tank, D.W. Regression-based identification of behavior-encoding neurons during large-scale optical imaging of neural activity at cellular resolution. J. Neurophysiol. 105, 964–980 (2011).

    PubMed  Google Scholar 

  59. Mukamel, E.A., Nimmerjahn, A. & Schnitzer, M.J. Automated analysis of cellular signals from large-scale calcium imaging data. Neuron 63, 747–760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Dombeck, D.A., Graziano, M.S. & Tank, D.W. Functional clustering of neurons in motor cortex determined by cellular resolution imaging in awake behaving mice. J. Neurosci. 29, 13751–13760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Kim and C. Guo (Genetically Encoded Neuronal Indicator and Effector Project, Janelia Research Campus) for transgenic mice, D. Aronov for VR software, B. Scott for discussions, and C. Domnisoru, A. Miri, F. Collman and S. Wang for comments on the manuscript. This work was supported by the US National Institutes of Health (R01-MH083686; P50-GM071508) and a National Science Foundation Graduate Research Fellowship to J.P.R.

Author information

Authors and Affiliations

Authors

Contributions

J.P.R. and D.W.T. designed the study. K.D. contributed reagents. J.P.R. and D.W.T. performed the experiments. J.P.R. analyzed data with strategy and methods contributions from D.W.T. J.P.R. and D.W.T. wrote the paper with comments from K.D.

Corresponding author

Correspondence to David W Tank.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Spectral properties of molecules, laser sources, and optics used in this approach.

a. Visible-wavelength regime. Shown are: fluorescence emission spectra for EGFP and EYFP (obtained from the Tsien Lab website, University of California, San Diego); the single-photon excitation spectrum for C1V1(E122T/E162T) (adapted from Yizhar et al., Nature 477, 171-178 [2011]); transmission curves for the dichroic (dark line) and emission filters (shaded areas) used in two-channel fluorescence detection (filter part numbers indicated); and the transmission curve for the long-pass laser-blocking filter (blue line; curves from Semrock). The 473 nm laser line used in single-photon excitation experiments is also indicated (dashed blue line). Each curve is normalized to its own peak value. b. Infrared-wavelength regime. Two-photon action cross section for GCaMP3 (green) and relative C1V1 photocurrent response amplitudes (see inset) sampled at two infrared TPE center wavelengths (λ=900 nm and λ=1050 nm). Inset: sample intracellular photocurrents from illuminated HEK293T cells expressing C1V1; peak squared-intensity values were similar (2.76x1054 γ2/cm4-s2 and 1.68x1054 γ2/cm4-s2 at 900 nm and 1050 nm; assuming a fixed output temporal pulse-width). The GCaMP3 action cross-section was measured using fluorescence excited by focused low-power illumination (regime of quadratic power dependence) of a purified GCaMP3.3 sample (37 μM concentration in 20 mM MOPS, 100 mM KCl, 2.7 mM K2CaEGTA, at pH 7.4; R. Sun and S. S.-H. Wang, Princeton), normalized at each wavelength using side-by-side measurements of a reference fluorophore (20 µM fluorescein in water, pH 11; see Albota, M. A., Xu, C. & Webb, W., Appl. Opt. 37, 7352–7356 [1998]). C1V1 wavelength-sensitivity was evaluated at two spectral bands (λ=900 nm and 1050 nm), using whole-cell electrode recordings at constant voltage (-50 mV) in HEK293T cells transiently expressing the pLenti-CaMKIIa-C1V1(E162T)-TS-EYFP construct with focused scanning methods and an apparatus described previously (Rickgauer and Tank, PNAS 106, 15025-15030 [2009]).

Supplementary Figure 2 Schematic for either single-photon or two-photon excitation (TPE) photostimulation and TPE imaging.

a. Position of optics used to introduce the SPE source into the TPE microscope head. Abbreviations: AM, alignment mirror; FT, focusing telescope; SP, short-pass filter; DC, dichroic filter; LP, long-pass filter; PMTs, photomultiplier tubes. b. TPE images (acquired at 920 nm) of a volume in a fluorescent plastic slide after bleaching neighboring areas using SPE (473 nm) and TPE (1064 nm, spatial focusing path; SF in Fig. 1, main text). Image intensity is inverted. Images are shown at the 1064 nm focal plane (upper) and as an xz projection of a through-focus series (lower).

Supplementary Figure 3 TPE stimulation evokes GCaMP3 transients consistent with action potentials (APs) and opsin-mediated depolarization in awake mice.

a. GCaMP3 ΔF/F values vs. stimulation pulse number. Somatic ΔF/F values for 6 neurons stimulated at 5, 10, and 20 Hz (16 ms per pulse), measured 500 ms after pulse-train onset (values for each cell are normalized to the peak response; average of 3-7 trials per data point). The monotonic relationship between ΔF/F and stimulation pulse number is consistent with a regime in which ΔF/F values also scale approximately linearly with AP number (assuming 1 AP per pulse; Tian et al., Nat. Methods 6, 875-881 [2009]). Inset: sample traces from one neuron stimulated with 10 pulses at 5, 10, and 20 Hz (each trace is a 5-trial average). Colored underlines indicate the corresponding stim. train period. Dashed line indicates the time at which values ΔF/F values were measured (500 ms after stim. onset). b. Histogram of measured GCaMP3 fluorescence transient half-decay times following offset of a photostimulation epoch (τ1/2 calculated from single-exponential decay fits). Following stim. offset, transients evoked in cells returned to resting levels with off-kinetics (τ1/2 = 375+/-196 ms; mean +/- s.d.) in the range observed in vivo during trains of electrically stimulated APs (τ1/2 = 384+/-76 ms for 10 APs; Tian et al., Nat. Methods 6, 875-881 [2009]). c. Peak GCaMP3 transient amplitude during raster-scanning photostimulation of a cell using the spatial focusing path (SF in Fig. 1, main text) shown for different TPE raster-scan periods, which varied by changing the number of lines in a raster-scan, and which were repeated over an interval of 512 ms. The dashed line indicates the approximate C1V1(t/t) inactivation time-constant (τoff = 40-50 ms; Mattis et al., Nat. Methods 9, 159-172 [2012]; Prakash et al., Nat. Methods 9, 1171-1179 [2012]). Faster-scanning photostimulation trials (Ts< τoff) produced larger-amplitude responses than slower-scanning trials (Ts> τoff; n=31 target cells; values for each cell normalized by maximum amplitude in that cell). This relationship is a signature of membrane depolarization mediated by scanning recruitment of opsin probes (Rickgauer and Tank, PNAS 106, 15025-15030 [2009]; Prakash et al., Nat. Methods 9, 1171-1179 [2012]; Packer et al., Nat. Methods 9, 1202-1205 [2012]). Inset: Exemplary ΔF/F traces from one cell illustrating this relationship (colors indicate scan periods of same-color dots in panel; bars indicate s.d.).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 277 kb)

Supplementary Methods Checklist

(PDF 350 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rickgauer, J., Deisseroth, K. & Tank, D. Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields. Nat Neurosci 17, 1816–1824 (2014). https://doi.org/10.1038/nn.3866

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3866

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing