Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Preparatory activity in motor cortex reflects learning of local visuomotor skills

Abstract

In humans, learning to produce correct visually guided movements to adapt to new sensorimotor conditions requires the formation of an internal model that represents the new transformation between visual input and the required motor command. When the new environment requires adaptation to directional errors, learning generalizes poorly to untrained locations and directions, indicating that such learning is local. Here we replicated these behavioral findings in rhesus monkeys using a visuomotor rotation task and simultaneously recorded neuronal activity. Specific changes in activity were observed only in a subpopulation of cells in the motor cortex with directional properties corresponding to the locally learned rotation. These changes adhered to the dynamics of behavior during learning and persisted between learning and relearning of the same rotation. These findings suggest a neural mechanism for the locality of newly acquired sensorimotor tasks and provide electrophysiological evidence for their retention in working memory.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design and recording locations.
Figure 2: Movement kinematics during and after learning.
Figure 3: Similar behavior before and after learning.
Figure 4: Increase in preparatory activity (PA) during learning trials, but not in movement-related activity (MRA).
Figure 5: Temporal pattern of changes in neuronal and muscular activity during learning.
Figure 6: Learning-induced changes in single cells.
Figure 7: Learning-induced changes as revealed by comparing population activities before and after learning.
Figure 8: Learning-induced changes were specific and were not observed for mere repetition of movement, for non-learned directions, or for movement-related activity.

References

  1. Soechting, J.F. & Flanders, M. Sensorimotor representations for pointing to targets in three-dimensional space. J. Neurophysiol. 62, 582–594 (1989).

    Article  CAS  Google Scholar 

  2. Kalaska, J.F., Scott, S.H., Cisek, P. & Sergio, L.E. Cortical control of reaching movements. Curr. Opin. Neurobiol. 7, 849–859 (1997).

    Article  CAS  Google Scholar 

  3. Buneo, C.A., Jarvis, M.R., Batista, A.P. & Andersen, R.A. Direct visuomotor transformations for reaching. Nature 416, 632–636 (2002).

    Article  CAS  Google Scholar 

  4. Shadmehr, R. & Mussa-Ivaldi, F.A. Adaptive representation of dynamics during learning of a motor task. J. Neurosci. 14, 3208–3224 (1994).

    Article  CAS  Google Scholar 

  5. Kawato, M. Internal models for motor control and trajectory planning. Curr. Opin. Neurobiol. 9, 718–727 (1999).

    Article  CAS  Google Scholar 

  6. Wolpert, D.M. & Ghahramani, Z. Computational principles of movement neuroscience. Nat. Neurosci. 3 (Suppl.), 1212–1217 (2000).

    Article  CAS  Google Scholar 

  7. Gandolfo, F., Mussa-Ivaldi, F.A. & Bizzi, E. Motor learning by field approximation. Proc. Natl. Acad. Sci. USA 93, 3843–3846 (1996).

    Article  CAS  Google Scholar 

  8. Pine, Z.M., Krakauer, J.W., Gordon, J. & Ghez, C. Learning of scaling factors and reference axes for reaching movements. Neuroreport 7, 2357–2361 (1996).

    Article  CAS  Google Scholar 

  9. Ghahramani, Z., Wolpert, D.M. & Jordan, M.I. Generalization to local remappings of the visuomotor coordinate transformation. J. Neurosci. 16, 7085–7096 (1996).

    Article  CAS  Google Scholar 

  10. Baraduc, P. & Wolpert, D.M. Adaptation to a visuomotor shift depends on the starting posture. J. Neurophysiol. 88, 973–981 (2002).

    Article  Google Scholar 

  11. Shadmehr, R. & Moussavi, Z.M. Spatial generalization from learning dynamics of reaching movements. J. Neurosci. 20, 7807–7815 (2000).

    Article  CAS  Google Scholar 

  12. Georgopoulos, A.P., Kalaska, J.F., Caminiti, R. & Massey, J.T. On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J. Neurosci. 2, 1527–1537 (1982).

    Article  CAS  Google Scholar 

  13. Kakei, S., Hoffman, D.S. & Strick, P.L. Muscle and movement representations in the primary motor cortex. Science 285, 2136–2139 (1999).

    Article  CAS  Google Scholar 

  14. Li, C.S., Padoa-Schioppa, C. & Bizzi, E. Neuronal correlates of motor performance and motor learning in the primary motor cortex of monkeys adapting to an external force field. Neuron 30, 593–607 (2001).

    Article  CAS  Google Scholar 

  15. Gribble, P.L. & Scott, S.H. Overlap of internal models in motor cortex for mechanical loads during reaching. Nature 417, 938–941 (2002).

    Article  CAS  Google Scholar 

  16. Padoa-Schioppa, C., Li, C.S.-R. & Bizzi, E. Neuronal correlates of kinematics-to-dynamics transformation in the supplementary motor area. Neuron 36, 751–765 (2002).

    Article  CAS  Google Scholar 

  17. Wise, S.P., Moody, S.L., Blomstrom, K.J. & Mitz, A.R. Changes in motor cortical activity during visuomotor adaptation. Exp. Brain Res. 121, 285–299 (1998).

    Article  CAS  Google Scholar 

  18. Sanes, J.N. & Donoghue, J.P. Plasticity and primary motor cortex. Annu. Rev. Neurosci. 23, 393–415 (2000).

    Article  CAS  Google Scholar 

  19. Hess, G. & Donoghue, J.P. Long-term depression of horizontal connections in rat motor cortex. Eur. J. Neurosci. 8, 658–665 (1996).

    Article  CAS  Google Scholar 

  20. Rioult, P.M., Friedman, D., Hess, G. & Donoghue, J.P. Strengthening of horizontal cortical connections following skill learning. Nat. Neurosci. 1, 230–234 (1998).

    Article  Google Scholar 

  21. Karni, A. et al. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377, 155–158 (1995).

    Article  CAS  Google Scholar 

  22. Jenkins, I.H., Brooks, D.J., Nixon, P.D., Frackowiak, R.S. & Passingham, R.E. Motor sequence learning: a study with positron emission tomography. J. Neurosci. 14, 3775–3790 (1994).

    Article  CAS  Google Scholar 

  23. Muellbacher, W., Ziemann, U., Boroojerdi, B., Cohen, L. & Hallett, M. Role of the human motor cortex in rapid motor learning. Exp. Brain Res. 136, 431–438 (2001).

    Article  CAS  Google Scholar 

  24. Shadmehr, R. & Holcomb, H.H. Neural correlates of motor memory consolidation. Science 277, 821–825 (1997).

    Article  CAS  Google Scholar 

  25. Brashers-Krug, T., Shadmehr, R. & Bizzi, E. Consolidation in human motor memory. Nature 382, 252–255 (1996).

    Article  CAS  Google Scholar 

  26. Muellbacher, W. et al. Early consolidation in human primary motor cortex. Nature 415, 640–644 (2002).

    Article  CAS  Google Scholar 

  27. Krakauer, J.W., Ghilardi, M.F. & Ghez, C. Independent learning of internal models for kinematic and dynamic control of reaching. Nat. Neurosci. 2, 1026–1031 (1999).

    Article  CAS  Google Scholar 

  28. Thoroughman, K.A. & Shadmehr, R. Electromyographic correlates of learning an internal model of reaching movements. J. Neurosci. 19, 8573–8588 (1999).

    Article  CAS  Google Scholar 

  29. Nezafat, R., Shadmehr, R. & Holcomb, H.H. Long-term adaptation to dynamics of reaching movements: a PET study. Exp. Brain Res. 140, 66–76 (2001).

    Article  CAS  Google Scholar 

  30. Osu, R. et al. Short- and long-term changes in joint co-contraction associated with motor learning as revealed from surface EMG. J. Neurophysiol. 88, 991–1004 (2002).

    Article  Google Scholar 

  31. Nudo, R.J., Milliken, G.W., Jenkins, W.M. & Merzenich, M.M. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J. Neurosci. 16, 785–807 (1996).

    Article  CAS  Google Scholar 

  32. Plautz, E.J., Milliken, G.W. & Nudo, R.J. Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol. Learn. Mem. 74, 27–55 (2000).

    Article  CAS  Google Scholar 

  33. Poggio, T. & Girosi, F. Theory of networks for learning. Science 247, 978–982 (1990).

    Article  CAS  Google Scholar 

  34. Schaal, S. & Atkeson, C.G. Constructive incremental learning from only local information. Neural Comput. 10, 2047–2084 (1998).

    Article  CAS  Google Scholar 

  35. Pouget, A. & Snyder, L.H. Computational approaches to sensorimotor transformations. Nat. Neurosci. 3 (Suppl.), 1192–1198 (2000).

    Article  CAS  Google Scholar 

  36. Thoroughman, K.A. & Shadmehr, R. Learning of action through adaptive combination of motor primitives. Nature 407, 742–747 (2000).

    Article  CAS  Google Scholar 

  37. Kalaska, J.F., Cohen, D.A., Hyde, M.L. & Prud'homme, M. A comparison of movement direction-related versus load direction-related activity in primate motor cortex, using a two-dimensional reaching task. J. Neurosci. 9, 2080–2102 (1989).

    Article  CAS  Google Scholar 

  38. Mitz, A.R., Godschalk, M. & Wise, S.P. Learning-dependent neuronal activity in the premotor cortex: activity during the acquisition of conditional motor associations. J. Neurosci. 11, 1855–1872 (1991).

    Article  CAS  Google Scholar 

  39. Yin, P.B. & Kitazawa, S. Long-lasting aftereffects of prism adaptation in the monkey. Exp. Brain Res. 141, 250–253 (2001).

    Article  CAS  Google Scholar 

  40. Alexander, G.E. & Crutcher, M.D. Preparation for movement: neural representations of intended direction in three motor areas of the monkey. J. Neurophysiol. 64, 133–150 (1990).

    Article  CAS  Google Scholar 

  41. Crammond, D.J. & Kalaska, J.F. Modulation of preparatory neuronal activity in dorsal premotor cortex due to stimulus-response compatibility. J. Neurophysiol. 71, 1281–1284 (1994).

    Article  CAS  Google Scholar 

  42. Wise, S.P., Di Pellegrino, G. & Boussaoud, D. The premotor cortex and nonstandard sensorimotor mapping. Can. J. Physiol. Pharmacol. 74, 469–482 (1996).

    CAS  Google Scholar 

  43. Shen, L. & Alexander, G.E. Preferential representation of instructed target location versus limb trajectory in dorsal premotor area. J. Neurophysiol. 77, 1195–1212 (1997).

    Article  CAS  Google Scholar 

  44. Kakei, S., Hoffman, D.S. & Strick, P.L. Direction of action is represented in the ventral premotor cortex. Nat. Neurosci. 4, 1020–1025 (2001).

    Article  CAS  Google Scholar 

  45. Tong, C., Wolpert, D.M. & Flanagan, J.R. Kinematics and dynamics are not represented independently in motor working memory: evidence from an interference study. J. Neurosci. 22, 1108–1113 (2002).

    Article  CAS  Google Scholar 

  46. Flanagan, J.R. et al. Composition and decomposition of internal models in motor learning under altered kinematic and dynamic environments. J. Neurosci. 19, RC34 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Wise, S. Cardoso de Oliveira and R. Shadmehr for discussions and comments on earlier versions of this manuscript, and G. Goelman for the MRI. This study was partly supported by a Center of Excellence grant (8006/00) administrated by the Israeli Science Foundation (ISF) and by the German Federal Ministry of Education and Research (BMBF) within the framework of German-Israeli project cooperation (DIP). R.P. was supported by the Constantiner fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rony Paz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paz, R., Boraud, T., Natan, C. et al. Preparatory activity in motor cortex reflects learning of local visuomotor skills. Nat Neurosci 6, 882–890 (2003). https://doi.org/10.1038/nn1097

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1097

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing