Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Localized striatal delivery of GDNF as a treatment for Parkinson disease

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protective effects of GDNF in the intrastriatal 6-OHDA model.
Figure 2: Summary of behavioral recovery documented in two experiments using the recombinant AAV and LV vectors in rodent and primate models of PD, respectively.

References

  1. Tuszynski, M.H. Growth-factor gene therapy for neurodegenerative disorders. Lancet Neurol. 1, 51–57 (2002).An excellent review on pseudotyped lentiviral vectors. Targeting of particular organs or cell types (for example, neurons, airway epithelia, tumours and others) is emphasized.

    Article  Google Scholar 

  2. Aebischer, P. & Ridet, J. Recombinant proteins for neurodegenerative diseases: the delivery issue. Trends Neurosci. 24, 533–540 (2001).This paper uses a technique involving the fusion of a pore protein to MN to show that promoters associate with nuclear pores in yeast.

    Article  CAS  Google Scholar 

  3. Gill, S.S. et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat. Med. 9, 589–595 (2003).

    Article  CAS  Google Scholar 

  4. Kearns, C.M., Cass, W.A., Smoot, K., Kryscio, R. & Gash, D.M. GDNF protection against 6-OHDA: time dependence and requirement for protein synthesis. J. Neurosci. 17, 7111–7118 (1997).

    Article  CAS  Google Scholar 

  5. Sullivan, A.M., Opacka-Juffry, J. & Blunt, S.B. Long-term protection of the rat nigrostriatal dopaminergic system by glial cell line-derived neurotrophic factor against 6-hydroxydopamine in vivo. Eur. J. Neurosci. 10, 57–63 (1998).The initial cross-linking study, showing that a range of pore proteins can be crosslinked by formaldehyde to many genes, among which are those induced by galactose.

    Article  CAS  Google Scholar 

  6. Sauer, H., Rosenblad, C. & Bjorklund, A. Glial cell line-derived neurotrophic factor but not transforming growth factor beta 3 prevents delayed degeneration of nigral dopaminergic neurons following striatal 6-hydroxydopamine lesion. Proc. Natl. Acad. Sci. USA 92, 8935–8939 (1995).

    Article  CAS  Google Scholar 

  7. Kirik, D., Rosenblad, C. & Bjorklund, A. Preservation of a functional nigrostriatal dopamine pathway by GDNF in the intrastriatal 6-OHDA lesion model depends on the site of administration of the trophic factor. Eur. J. Neurosci. 12, 3871–3882 (2000).

    Article  CAS  Google Scholar 

  8. Winkler, C., Sauer, H., Lee, C.S. & Bjorklund, A. Short-term GDNF treatment provides long-term rescue of lesioned nigral dopaminergic neurons in a rat model of Parkinson's disease. J. Neurosci. 16, 7206–7215 (1996).

    Article  CAS  Google Scholar 

  9. Sauer, H. & Oertel, W.H. Progressive degeneration of nigrostriatal dopamine neurons following axon terminal lesion by intrastriatal 6-hydroxydopamine in the rat. Neuroscience 59, 401–415 (1994).

    Article  CAS  Google Scholar 

  10. Rosenblad, C., Kirik, D. & Bjorklund, A. Sequential administration of GDNF into the substantia nigra and striatum promotes dopamine neuron survival and axonal sprouting but not striatal reinnervation or functional recovery in the partial 6-OHDA lesion model. Exp. Neurol. 161, 503–516 (2000).

    Article  CAS  Google Scholar 

  11. Rosenblad, C. et al. Protection and regeneration of nigral dopaminergic neurons by neurturin or GDNF in a partial lesion model of Parkinson's disease after administration into the striatum or the lateral ventricle. Eur. J. Neurosci. 11, 1554–1566 (1999).

    Article  CAS  Google Scholar 

  12. Kimpinski, K., Campenot, R.B. & Mearow, K. Effects of the neurotrophins nerve growth factor, neurotrophin-3, and brain-derived neurotrophic factor (BDNF) on neurite growth from adult sensory neurons in compartmented cultures. J. Neurobiol. 33, 395–410 (1997).

    Article  CAS  Google Scholar 

  13. Hudson, J. et al. Glial cell line-derived neurotrophic factor augments midbrain dopaminergic circuits in vivo. Brain Res. Bull. 36, 425–432 (1995).

    Article  CAS  Google Scholar 

  14. Gash, D.M. et al. Morphological and functional effects of intranigrally administered GDNF in normal rhesus monkeys. J. Comp. Neurol. 363, 345–358 (1995).

    Article  CAS  Google Scholar 

  15. Hebert, M.A., Van Horne, C.G., Hoffer, B.J. & Gerhardt, G.A. Functional effects of GDNF in normal rat striatum: presynaptic studies using in vivo electrochemistry and microdialysis. J. Pharmacol. Exp. Ther. 279, 1181–1190 (1996).

    CAS  PubMed  Google Scholar 

  16. Martin, D. et al. Intranigral or intrastriatal injections of GDNF: effects on monoamine levels and behavior in rats. Eur. J. Pharmacol. 317, 247–256 (1996).

    Article  CAS  Google Scholar 

  17. Hebert, M.A. & Gerhardt, G.A. Behavioral and neurochemical effects of intranigral administration of glial cell line-derived neurotrophic factor on aged Fischer 344 rats. J. Pharmacol. Exp. Ther. 282, 760–768 (1997).

    CAS  PubMed  Google Scholar 

  18. Horger, B.A. et al. Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons. J. Neurosci. 18, 4929–4937 (1998).

    Article  CAS  Google Scholar 

  19. Martin, D. et al. Glial cell line-derived neurotrophic factor: the lateral cerebral ventricle as a site of administration for stimulation of the substantia nigra dopamine system in rats. Eur. J. Neurosci. 8, 1249–1255 (1996).

    Article  CAS  Google Scholar 

  20. Kobayashi, S., Ogren, S.O., Hoffer, B.J. & Olson, L. Dopamine D1 and D2 receptor-mediated acute and long-lasting behavioral effects of glial cell line-derived neurotrophic factor administered into the striatum. Exp. Neurol. 154, 302–314 (1998).

    Article  CAS  Google Scholar 

  21. Maswood, N. et al. Effects of chronic intraputamenal infusion of glial cell line-derived neurotrophic factor (GDNF) in aged Rhesus monkeys. Neurobiol. Aging 23, 881–889 (2002).

    Article  CAS  Google Scholar 

  22. Grondin, R. et al. Glial cell line-derived neurotrophic factor increases stimulus-evoked dopamine release and motor speed in aged rhesus monkeys. J. Neurosci. 23, 1974–1980 (2003).

    Article  CAS  Google Scholar 

  23. Ai, Y. et al. Intraputamenal infusion of GDNF in aged rhesus monkeys: distribution and dopaminergic effects. J. Comp. Neurol. 461, 250–261 (2003).

    Article  CAS  Google Scholar 

  24. Gash, D.M. et al. Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380, 252–255 (1996).

    Article  CAS  Google Scholar 

  25. Zhang, Z. et al. Dose response to intraventricular glial cell line-derived neurotrophic factor administration in parkinsonian monkeys. J. Pharmacol. Exp. Ther. 282, 1396–1401 (1997).

    CAS  PubMed  Google Scholar 

  26. Miyoshi, Y. et al. Glial cell line-derived neurotrophic factor-levodopa interactions and reduction of side effects in parkinsonian monkeys. Ann. Neurol. 42, 208–214 (1997).

    Article  CAS  Google Scholar 

  27. Gerhardt, G.A. et al. GDNF improves dopamine function in the substantia nigra but not the putamen of unilateral MPTP-lesioned rhesus monkeys. Brain Res. 817, 163–171 (1999).

    Article  CAS  Google Scholar 

  28. Costa, S., Iravani, M.M., Pearce, R.K. & Jenner, P. Glial cell line-derived neurotrophic factor concentration dependently improves disability and motor activity in MPTP-treated common marmosets. Eur. J. Pharmacol. 412, 45–50 (2001).

    Article  CAS  Google Scholar 

  29. Grondin, R. et al. Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Brain 125, 2191–2201 (2002).

    Article  Google Scholar 

  30. Hoffer, B.J. et al. Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo. Neurosci. Lett. 182, 107–111 (1994).

    Article  CAS  Google Scholar 

  31. Hoffman, A.F., van Horne, C.G., Eken, S., Hoffer, B.J. & Gerhardt, G.A. In vivo microdialysis studies on somatodendritic dopamine release in the rat substantia nigra: effects of unilateral 6-OHDA lesions and GDNF. Exp. Neurol. 147, 130–141 (1997).

    Article  CAS  Google Scholar 

  32. Lapchak, P.A., Miller, P.J., Collins, F. & Jiao, S. Glial cell line-derived neurotrophic factor attenuates behavioural deficits and regulates nigrostriatal dopaminergic and peptidergic markers in 6-hydroxydopamine-lesioned adult rats: comparison of intraventricular and intranigral delivery. Neuroscience 78, 61–72 (1997).

    Article  CAS  Google Scholar 

  33. Kirik, D., Georgievska, B., Rosenblad, C. & Bjorklund, A. Delayed infusion of GDNF promotes recovery of motor function in the partial lesion model of Parkinson's disease. Eur. J. Neurosci. 13, 1589–1599 (2001).

    Article  CAS  Google Scholar 

  34. Pothos, E.N. et al. Synaptic vesicle transporter expression regulates vesicle phenotype and quantal size. J. Neurosci. 20, 7297–7306 (2000).

    Article  CAS  Google Scholar 

  35. Yang, F. et al. GDNF acutely modulates excitability and A-type K+ channels in midbrain dopaminergic neurons. Nat. Neurosci. 4, 1071–1078 (2001).

    Article  CAS  Google Scholar 

  36. Wang, J., Chen, G., Lu, B. & Wu, C.P. GDNF acutely potentiates Ca2+ channels and excitatory synaptic transmission in midbrain dopaminergic neurons. Neurosignals 12, 78–88 (2003).

    Article  CAS  Google Scholar 

  37. Rosenblad, C., Martinez-Serrano, A. & Bjorklund, A. Intrastriatal glial cell line-derived neurotrophic factor promotes sprouting of spared nigrostriatal dopaminergic afferents and induces recovery of function in a rat model of Parkinson's disease. Neuroscience 82, 129–137 (1998).

    Article  CAS  Google Scholar 

  38. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease. N. Engl. J. Med. 345, 956–963 (2001).

  39. Choi-Lundberg, D.L. et al. Dopaminergic neurons protected from degeneration by GDNF gene therapy [see comments]. Science 275, 838–841 (1997).

    Article  CAS  Google Scholar 

  40. Connor, B. et al. Differential effects of glial cell line-derived neurotrophic factor (GDNF) in the striatum and substantia nigra of the aged Parkinsonian rat. Gene Ther. 6, 1936–1951 (1999).

    Article  CAS  Google Scholar 

  41. Mandel, R.J., Spratt, S.K., Snyder, R.O. & Leff, S.E. Midbrain injection of recombinant adeno-associated virus encoding rat glial cell line-derived neurotrophic factor protects nigral neurons in a progressive 6-hydroxydopamine-induced degeneration model of Parkinson's disease in rats. Proc. Natl. Acad. Sci. USA 94, 14083–14088 (1997).

    Article  CAS  Google Scholar 

  42. Kirik, D., Rosenblad, C., Bjorklund, A. & Mandel, R.J. Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson's model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system. J. Neurosci. 20, 4686–4700 (2000).

    Article  CAS  Google Scholar 

  43. Deglon, N. et al. Self-inactivating lentiviral vectors with enhanced transgene expression as potential gene transfer system in Parkinson's disease. Hum. Gene Ther. 11, 179–190 (2000).

    Article  CAS  Google Scholar 

  44. Bensadoun, J.C. et al. Lentiviral vectors as a gene delivery system in the mouse midbrain: cellular and behavioral improvements in a 6-OHDA model of Parkinson's disease using GDNF. Exp. Neurol. 164, 15–24 (2000).

    Article  CAS  Google Scholar 

  45. Kordower, J.H. et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science 290, 767–773 (2000).

    Article  CAS  Google Scholar 

  46. Georgievska, B., Kirik, D. & Bjorklund, A. Aberrant sprouting and downregulation of tyrosine hydroxylase in lesioned nigrostriatal dopamine neurons induced by long-lasting overexpression of glial cell line derived neurotrophic factor in the striatum by lentiviral gene transfer. Exp. Neurol. 177, 461–474 (2002).

    Article  CAS  Google Scholar 

  47. Bjorklund, A. et al. Towards a neuroprotective gene therapy for Parkinson's disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model. Brain Res. 886, 82–98 (2000).

    Article  CAS  Google Scholar 

  48. Nutt, J.G. et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 60, 69–73 (2003).

    Article  CAS  Google Scholar 

  49. Iravani, M. et al. GDNF reverses priming for dyskinesia in MPTP-treated, L-DOPA-primed common marmosets. Eur. J. Neurosci. 13, 597–608 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our studies have been supported by grants from the Swedish Research Council (A.B. and D.K.). We thank B. Mattsson for technical assistance in preparation of the illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Kirik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirik, D., Georgievska, B. & Björklund, A. Localized striatal delivery of GDNF as a treatment for Parkinson disease. Nat Neurosci 7, 105–110 (2004). https://doi.org/10.1038/nn1175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing