Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reductions in neural activity underlie behavioral components of repetition priming

Abstract

Repetition priming is a nonconscious form of memory that is accompanied by reductions in neural activity when an experience is repeated. To date, however, there is no direct evidence that these neural reductions underlie the behavioral advantage afforded to repeated material. Here we demonstrate a causal linkage between neural and behavioral priming in humans. fMRI (functional magnetic resonance imaging) was used in combination with transcranial magnetic stimulation (TMS) to target and disrupt activity in the left frontal cortex during repeated classification of objects. Left-frontal TMS disrupted both the neural and behavioral markers of priming. Neural priming in early sensory regions was unaffected by left-frontal TMS—a finding that provides evidence for separable conceptual and perceptual components of priming.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design.
Figure 2: TMS timing parameters.
Figure 3: Neural priming before TMS.
Figure 4: Neural priming after TMS.
Figure 5: Behavioral priming after left-frontal and control-site TMS.

Similar content being viewed by others

References

  1. Schacter, D.L., Chiu, C.Y. & Ochsner, K.N. Implicit memory: a selective review. Annu. Rev. Neurosci. 16, 159–182 (1993).

    Article  CAS  Google Scholar 

  2. Tulving, E. & Schacter, D.L. Priming and human memory systems. Science 247, 301–306 (1990).

    Article  CAS  Google Scholar 

  3. Desimone, R. Neural mechanisms for visual memory and their role in attention. Proc. Natl. Acad. Sci. USA 93, 13494–13499 (1996).

    Article  CAS  Google Scholar 

  4. Miller, E.K., Li, L. & Desimone, R. A neural mechanism for working and recognition memory in inferior temporal cortex. Science 254, 1377–1379 (1991).

    Article  CAS  Google Scholar 

  5. Rainer, G. & Miller, E.K. Effects of visual experience on the representation of objects in the prefrontal cortex. Neuron 27, 179–189 (2000).

    Article  CAS  Google Scholar 

  6. Buckner, R.L. et al. Functional-anatomic correlates of object priming in humans revealed by rapid presentation event-related fMRI. Neuron 20, 285–296 (1998).

    Article  CAS  Google Scholar 

  7. Buckner, R.L. et al. Functional anatomical studies of explicit and implicit memory retrieval tasks. J. Neurosci. 15, 12–29 (1995).

    Article  CAS  Google Scholar 

  8. Demb, J.B. et al. Semantic encoding and retrieval in the left inferior prefrontal cortex: a functional MRI study of task difficulty and process specificity. J. Neurosci. 15, 5870–5878 (1995).

    Article  CAS  Google Scholar 

  9. Raichle, M.E. et al. Practice-related changes in human brain functional anatomy during nonmotor learning. Cereb. Cortex 4, 8–26 (1994).

    Article  CAS  Google Scholar 

  10. Maccotta, L. & Buckner, R.L. Evidence for neural effects of repetition that directly correlate with behavioral priming. J. Cogn. Neurosci. 16, 1625–1632 (2004).

    Article  Google Scholar 

  11. Henson, R.N. Neuroimaging studies of priming. Prog. Neurobiol. 70, 53–81 (2003).

    Article  CAS  Google Scholar 

  12. Schacter, D.L. & Buckner, R.L. Priming and the brain. Neuron 20, 185–195 (1998).

    Article  CAS  Google Scholar 

  13. Wiggs, C.L. & Martin, A. Properties and mechanisms of perceptual priming. Curr. Opin. Neurobiol. 8, 227–233 (1998).

    Article  CAS  Google Scholar 

  14. Henson, R.N. & Rugg, M.D. Neural response suppression, haemodynamic repetition effects, and behavioural priming. Neuropsychologia 41, 263–270 (2003).

    Article  CAS  Google Scholar 

  15. Schacter, D.L., Dobbins, I.G. & Schnyer, D.M. Specificity of priming: a cognitive neuroscience perspective. Nat. Rev. Neurosci. 5, 853–862 (2004).

    Article  CAS  Google Scholar 

  16. Henson, R., Shallice, T. & Dolan, R. Neuroimaging evidence for dissociable forms of repetition priming. Science 287, 1269–1272 (2000).

    Article  CAS  Google Scholar 

  17. van Turennout, M., Ellmore, T. & Martin, A. Long-lasting cortical plasticity in the object naming system. Nat. Neurosci. 3, 1329–1334 (2000).

    Article  CAS  Google Scholar 

  18. Wagner, A.D., Desmond, J.E., Demb, J.B., Glover, G.H. & Gabrieli, J.D.E. Semantic repetition priming for verbal and pictorial knowledge: A functional MRI study of left inferior prefrontal cortex. J. Cogn. Neurosci. 9, 714–726 (1997).

    Article  CAS  Google Scholar 

  19. Dobbins, I.G., Schnyer, D.M., Verfaellie, M. & Schacter, D.L. Cortical activity reductions during repetition priming can result from rapid response learning. Nature 428, 316–319 (2004).

    Article  CAS  Google Scholar 

  20. Friston, K.J., Frith, C.D., Passingham, R.E., Liddle, P.F. & Frackowiak, R.S. Motor practice and neurophysiological adaptation in the cerebellum: a positron tomography study. Proc. Biol. Sci. 248, 223–228 (1992).

    Article  CAS  Google Scholar 

  21. Grafton, S.T., Hazeltine, E. & Ivry, R. Functional mapping of sequence learning in normal humans. J. Cogn. Neurosci. 7, 497–510 (1995).

    Article  CAS  Google Scholar 

  22. Grafton, S.T., Hazeltine, E. & Ivry, R.B. Abstract and effector-specific representations of motor sequences identified with PET. J. Neurosci. 18, 9420–9428 (1998).

    Article  CAS  Google Scholar 

  23. Grafton, S.T. et al. Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET. J. Neurosci. 12, 2542–2548 (1992).

    Article  CAS  Google Scholar 

  24. Hazeltine, E., Grafton, S.T. & Ivry, R. Attention and stimulus characteristics determine the locus of motor-sequence encoding. A PET study. Brain 120, 123–140 (1997).

    Article  Google Scholar 

  25. van Mier, H., Tempel, L.W., Perlmutter, J.S., Raichle, M.E. & Petersen, S.E. Changes in brain activity during motor learning measured with PET: effects of hand of performance and practice. J. Neurophysiol. 80, 2177–2199 (1998).

    Article  CAS  Google Scholar 

  26. Ward, N.S., Brown, M.M., Thompson, A.J. & Frackowiak, R.S. Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 126, 2476–2496 (2003).

    Article  CAS  Google Scholar 

  27. Karni, A. et al. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377, 155–158 (1995).

    Article  CAS  Google Scholar 

  28. Petersen, S.E., van Mier, H., Fiez, J.A. & Raichle, M.E. The effects of practice on the functional anatomy of task performance. Proc. Natl. Acad. Sci. USA 95, 853–860 (1998).

    Article  CAS  Google Scholar 

  29. Shadmehr, R. & Holcomb, H.H. Neural correlates of motor memory consolidation. Science 277, 821–825 (1997).

    Article  CAS  Google Scholar 

  30. Maccotta, L. & Buckner, R.L. Evidence for neural effects of repetition that directly correlate with behavioral priming. J. Cogn. Neurosci. 16, 1625–1632 (2004).

    Article  Google Scholar 

  31. Buckner, R.L., Koutstaal, W., Schacter, D.L. & Rosen, B.R. Functional MRI evidence for a role of frontal and inferior temporal cortex in amodal components of priming. Brain 123, 620–640 (2000).

    Article  Google Scholar 

  32. Dale, A.M. et al. Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26, 55–67 (2000).

    Article  CAS  Google Scholar 

  33. Donaldson, D.I., Petersen, S.E. & Buckner, R.L. Dissociating memory retrieval processes using fMRI: evidence that priming does not support recognition memory. Neuron 31, 1047–1059 (2001).

    Article  CAS  Google Scholar 

  34. Bergerbest, D., Ghahremani, D.G. & Gabrieli, J.D.E. Neural correlates of auditory repetition priming: Reduced fMRI activation in the auditory cortex. J. Cogn. Neurosci. 16, 966–977 (2004).

    Article  Google Scholar 

  35. Donaldson, D.I., Petersen, S.E. & Buckner, R.L. Dissociating memory retrieval processes using fMRI: Evidence that priming does not support recognition memory. Neuron 31, 1047–1059 (2001).

    Article  CAS  Google Scholar 

  36. Koutstaal, W. et al. Perceptual specificity in visual object priming: functional magnetic resonance imaging evidence for a laterality difference in fusiform cortex. Neuropsychologia 39, 184–199 (2001).

    Article  CAS  Google Scholar 

  37. Wagner, A.D., Desmond, J.E., Demb, J.B., Glover, G.H. & Gabrieli, J.D.E. Semantic repetition priming for verbal and pictorial knowledge: A functional MRI study of left inferior prefrontal cortex. J. Cogn. Neurosci. 9, 714–726 (1997).

    Article  CAS  Google Scholar 

  38. Keane, M.M., Gabrieli, J.D., Fennema, A.C., Growdon, J.H. & Corkin, S. Evidence for a dissociation between perceptual and conceptual priming in Alzheimer's disease. Behav. Neurosci. 105, 326–342 (1991).

    Article  CAS  Google Scholar 

  39. Gabrieli, J.D.E., Fleischman, D.A., Keane, M.M.I., R.S. & Morell, F. Double dissociation between memory systems underlying explicit and implicit memory in the human brain. Psychol. Sci. 6, 76–82 (1995).

    Article  Google Scholar 

  40. Raczkowski, D., Kalat, J.W. & Nebes, R. Reliability and validity of some handedness questionnaire items. Neuropsychologia 12, 43–47 (1974).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Henson and A. Martin for their helpful comments on an earlier version of this manuscript, and R. Magge and T. Laroche for their technical assistance. This work was supported by a US National Institutes of Health grant (MH64667) to W.M.K. and the Dartmouth Brain Imaging Center. G.S.W. is a graduate fellow of the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gagan S Wig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Post-TMS neural priming in the left posterior temporal cortex following left frontal and control-site TMS. (PDF 101 kb)

Supplementary Methods (PDF 135 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wig, G., Grafton, S., Demos, K. et al. Reductions in neural activity underlie behavioral components of repetition priming. Nat Neurosci 8, 1228–1233 (2005). https://doi.org/10.1038/nn1515

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1515

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing