Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information

Abstract

A prominent model of how the brain regulates attention proposes that the anterior cingulate cortex monitors the occurrence of conflict between incompatible response tendencies and signals this information to a cognitive control system in dorsolateral prefrontal cortex. Cognitive control is thought to resolve conflict through the attentional biasing of perceptual processing, emphasizing task-relevant stimulus information. It is not known, however, whether conflict resolution is mediated by amplifying neural representations of task-relevant information, inhibiting representations of task-irrelevant information, or both. Here we manipulated trial-by-trial levels of conflict and control during a Stroop task using face stimuli, while recording hemodynamic responses from human visual cortex specialized for face processing. We show that, in response to high conflict, cognitive control mechanisms enhance performance by transiently amplifying cortical responses to task-relevant information rather than by inhibiting responses to task-irrelevant information. These results implicate attentional target-feature amplification as the primary mechanism for conflict resolution through cognitive control.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental protocol.
Figure 2: Conflict adaptation in behavioral and fMRI data.
Figure 3: Task- and region-specificity of cognitive control effects.
Figure 4: Regions associated with top-down control processes.

References

  1. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  CAS  Google Scholar 

  2. Miller, E.K. & Cohen, J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    Article  CAS  Google Scholar 

  3. Logan, G.D. & Zbrodoff, N.J. When it helps to be misled: facilitative effects of increasing the frequency of conflicting stimuli in a Stroop-like task. Mem. Cognit. 7, 166–174 (1979).

    Article  Google Scholar 

  4. Gratton, G., Coles, M.G. & Donchin, E. Optimizing the use of information: strategic control of activation of responses. J. Exp. Psychol. Gen. 121, 480–506 (1992).

    Article  CAS  Google Scholar 

  5. Stroop, J.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 643–662 (1935).

    Article  Google Scholar 

  6. MacLeod, C.M. Half a century of research on the Stroop effect: an integrative review. Psychol. Bull. 109, 163–203 (1991).

    Article  CAS  Google Scholar 

  7. Kerns, J.G. et al. Anterior cingulate conflict monitoring and adjustments in control. Science 303, 1023–1026 (2004).

    Article  CAS  Google Scholar 

  8. Egner, T. & Hirsch, J. The neural correlates and functional integration of cognitive control in a Stroop task. Neuroimage 24, 539–547 (2005).

    Article  Google Scholar 

  9. Botvinick, M.M., Braver, T.S., Barch, D.M., Carter, C.S. & Cohen, J.D. Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652 (2001).

    Article  CAS  Google Scholar 

  10. Carter, C.S. et al. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280, 747–749 (1998).

    Article  CAS  Google Scholar 

  11. Carter, C.S. et al. Parsing executive processes: strategic vs. evaluative functions of the anterior cingulate cortex. Proc. Natl. Acad. Sci. USA 97, 1944–1948 (2000).

    Article  CAS  Google Scholar 

  12. Botvinick, M., Nystrom, L.E., Fissell, K., Carter, C.S. & Cohen, J.D. Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 402, 179–181 (1999).

    Article  CAS  Google Scholar 

  13. MacDonald, A.W., III, Cohen, J.D., Stenger, V.A. & Carter, C.S. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288, 1835–1838 (2000).

    Article  CAS  Google Scholar 

  14. Durston, S. et al. Parametric manipulation of conflict and response competition using rapid mixed-trial event-related fMRI. Neuroimage 20, 2135–2141 (2003).

    Article  CAS  Google Scholar 

  15. Casey, B.J. et al. Dissociation of response conflict, attentional selection, and expectancy with functional magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 97, 8728–8733 (2000).

    Article  CAS  Google Scholar 

  16. Cohen, J.D., Dunbar, K. & McClelland, J.L. On the control of automatic processes: a parallel distributed processing account of the Stroop effect. Psychol. Rev. 97, 332–361 (1990).

    Article  CAS  Google Scholar 

  17. Kastner, S. & Ungerleider, L.G. Mechanisms of visual attention in the human cortex. Annu. Rev. Neurosci. 23, 315–341 (2000).

    Article  CAS  Google Scholar 

  18. Heinze, H.J. et al. Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature 372, 543–546 (1994).

    Article  CAS  Google Scholar 

  19. Luck, S.J., Chelazzi, L., Hillyard, S.A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J. Neurophysiol. 77, 24–42 (1997).

    Article  CAS  Google Scholar 

  20. Corbetta, M., Miezin, F.M., Dobmeyer, S., Shulman, G.L. & Petersen, S.E. Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J. Neurosci. 11, 2383–2402 (1991).

    Article  CAS  Google Scholar 

  21. Treue, S. & Maunsell, J.H. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382, 539–541 (1996).

    Article  CAS  Google Scholar 

  22. Chawla, D., Rees, G. & Friston, K.J. The physiological basis of attentional modulation in extrastriate visual areas. Nat. Neurosci. 2, 671–676 (1999).

    Article  CAS  Google Scholar 

  23. O'Craven, K.M., Downing, P.E. & Kanwisher, N. fMRI evidence for objects as the units of attentional selection. Nature 401, 584–587 (1999).

    Article  CAS  Google Scholar 

  24. Serences, J.T., Schwarzbach, J., Courtney, S.M., Golay, X. & Yantis, S. Control of object-based attention in human cortex. Cereb. Cortex 14, 1346–1357 (2004).

    Article  Google Scholar 

  25. Kanwisher, N., McDermott, J. & Chun, M.M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    Article  CAS  Google Scholar 

  26. Wylie, G.R., Javitt, D.C. & Foxe, J.J. Don't think of a white bear: an fMRI investigation of the effects of sequential instructional sets on cortical activity in a task-switching paradigm. Hum. Brain Mapp. 21, 279–297 (2004).

    Article  Google Scholar 

  27. O'Craven, K.M. & Kanwisher, N. Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J. Cogn. Neurosci. 12, 1013–1023 (2000).

    Article  CAS  Google Scholar 

  28. Cox, D., Meyers, E. & Sinha, P. Contextually evoked object-specific responses in human visual cortex. Science 304, 115–117 (2004).

    Article  CAS  Google Scholar 

  29. Summerfield, C., Egner, T., Mangels, J. & Hirsch, J. Mistaking a house for a face: neural correlates of misperception in healthy humans. Cereb. Cortex, published online 13 July 2005 (10.1093/cercor/bhi129).

  30. Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598–601 (1998).

    Article  CAS  Google Scholar 

  31. Friston, K.J. et al. Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 6, 218–229 (1997).

    Article  CAS  Google Scholar 

  32. Friston, K.J. Functional integration in the brain. in Human Brain Function 2nd edn. (eds. Frackowiak, R.S. et al.) 971–997 (Academic Press, San Diego, 2004).

    Google Scholar 

  33. Mayr, U., Awh, E. & Laurey, P. Conflict adaptation effects in the absence of executive control. Nat. Neurosci. 6, 450–452 (2003).

    Article  CAS  Google Scholar 

  34. Botvinick, M.M., Cohen, J.D. & Carter, C.S. Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn. Sci. 8, 539–546 (2004).

    Article  Google Scholar 

  35. Nieuwenhuis, S. et al. Accounting for sequential effects in the flanker task: Conflict adaptation or associative priming? Mem. Cognit. (in the press).

  36. Eriksen, B.A. & Eriksen, C.W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 16, 143–149 (1974).

    Article  Google Scholar 

  37. Kastner, S., Pinsk, M.A., De Weerd, P., Desimone, R. & Ungerleider, L.G. Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22, 751–761 (1999).

    Article  CAS  Google Scholar 

  38. Egner, T. & Hirsch, J. Where memory meets attention: neural substrates of negative priming. J. Cogn. Neurosci. 17, 1774–1784 (2005).

    Article  Google Scholar 

  39. Lavie, N. Perceptual load as a necessary condition for selective attention. J. Exp. Psychol. Hum. Percept. Perform. 21, 451–468 (1995).

    Article  CAS  Google Scholar 

  40. Rees, G., Frith, C.D. & Lavie, N. Modulating irrelevant motion perception by varying attentional load in an unrelated task. Science 278, 1616–1619 (1997).

    Article  CAS  Google Scholar 

  41. Hommel, B., Proctor, R.W. & Vu, K.P. A feature-integration account of sequential effects in the Simon task. Psychol. Res. 68, 1–17 (2004).

    Article  Google Scholar 

  42. Sturmer, B., Leuthold, H., Soetens, E., Schroter, H. & Sommer, W. Control over location-based response activation in the Simon task: behavioral and electrophysiological evidence. J. Exp. Psychol. Hum. Percept. Perform. 28, 1345–1363 (2002).

    Article  Google Scholar 

  43. Cho, R.Y. et al. Mechanisms underlying dependencies of performance on stimulus history in a two-alternative forced-choice task. Cogn. Affect. Behav. Neurosci. 2, 283–299 (2002).

    Article  Google Scholar 

  44. Jones, A.D., Cho, R.Y., Nystrom, L.E., Cohen, J.D. & Braver, T.S. A computational model of anterior cingulate function in speeded response tasks: effects of frequency, sequence, and conflict. Cogn. Affect. Behav. Neurosci. 2, 300–317 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Etkin, C. Summerfield, E. Stern, J. Grinband and J. Mangels for comments. This work was funded in part by Johnson & Johnson (J.H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Egner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egner, T., Hirsch, J. Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nat Neurosci 8, 1784–1790 (2005). https://doi.org/10.1038/nn1594

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1594

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing