Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Calcium-dependent interaction of Lis1 with IQGAP1 and Cdc42 promotes neuronal motility

Abstract

Lis1 gene defects impair neuronal migration, causing the severe human brain malformation lissencephaly. Although much is known about its interactions with microtubules, microtubule-binding proteins such as CLIP-170, and with the dynein motor complex, the response of Lis1 to neuronal motility signals has not been elucidated. Lis1 deficiency is associated with deregulation of the Rho-family GTPases Cdc42, Rac1 and RhoA, and ensuing actin cytoskeletal defects, but the link between Lis1 and Rho GTPases remains unclear. We report here that calcium influx enhances neuronal motility through Lis1-dependent regulation of Rho GTPases. Lis1 promotes Cdc42 activation through interaction with the calcium sensitive GTPase scaffolding protein IQGAP1, maintaining the perimembrane localization of IQGAP1 and CLIP170 and thereby tethering microtubule ends to the cortical actin cytoskeleton. Lis1 thus is a key component of neuronal motility signal transduction that regulates the cytoskeleton by complexing with IQGAP1, active Cdc42 and CLIP-170 upon calcium influx.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: D-Serine requires Lis1 to increase neuronal migration in a Cdc42-dependent manner.
Figure 2: D-Serine activation of Rho GTPases is impaired in Lis1+/− neurons.
Figure 3: D-Serine and Lis1 regulate F-actin content in a Cdc42-dependent manner.
Figure 4: Lis1 levels modulate IQGAP1 and CLIP-170 distribution.
Figure 5: Ca2+-dependent redistribution of CLIP-170 and IQGAP1 to the insoluble fraction is impaired in Lis1+/− neurons.
Figure 6: Lis1 and IQGAP1 colocalize in cells and coprecipitate with WASP-CD agarose (WCD) along with Cdc42-GTP, and by direct immunoprecipitation.
Figure 7: RNAi-targeted decreases in CLIP-170 or IQGAP1 reduce Lis1 and Cdc42 in WCD-complexes.

Similar content being viewed by others

References

  1. Raftopoulou, M. & Hall, A. Cell migration: Rho GTPases lead the way. Dev. Biol. 265, 23–32 (2004).

    Article  CAS  Google Scholar 

  2. Ridley, A.J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    Article  CAS  Google Scholar 

  3. Nelson, W.J. Adaptation of core mechanisms to generate cell polarity. Nature 422, 766–774 (2003).

    Article  CAS  Google Scholar 

  4. Kholmanskikh, S.S., Dobrin, J.S., Wynshaw-Boris, A., Letourneau, P.C. & Ross, M.E. Disregulated Rho GTPases and actin cytoskeleton contribute to the migration defect in Lis1-deficient neurons. J. Neurosci. 23, 8673–8681 (2003).

    Article  CAS  Google Scholar 

  5. Berridge, M.J., Bootman, M.D. & Roderick, H.L. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517–529 (2003).

    Article  CAS  Google Scholar 

  6. Xu, H.T. et al. Calcium signaling in chemorepellant Slit2-dependent regulation of neuronal migration. Proc. Natl Acad. Sci. USA 101, 4296–4301 (2004).

    Article  CAS  Google Scholar 

  7. Robles, E., Huttenlocher, A. & Gomez, T.M. Filopodial calcium transients regulate growth cone motility and guidance through local activation of calpain. Neuron 38, 597–609 (2003).

    Article  CAS  Google Scholar 

  8. Fishman, R.B. & Hatten, M.E. Multiple receptor systems promote CNS neural migration. J. Neurosci. 13, 3485–3495 (1993).

    Article  CAS  Google Scholar 

  9. Rivas, R.J. & Hatten, M.E. Motility and cytoskeletal organization of migrating cerebellar granule neurons. J. Neurosci. 15, 981–989 (1995).

    Article  CAS  Google Scholar 

  10. Wittmann, T. & Waterman-Storer, C.M. Cell motility: can Rho GTPases and microtubules point the way? J. Cell Sci. 114, 3795–3803 (2001).

    CAS  PubMed  Google Scholar 

  11. Swart-Mataraza, J.M., Li, Z. & Sacks, D.B. IQGAP1 is a component of Cdc42 signaling to the cytoskeleton. J. Biol. Chem. 277, 24753–24763 (2002).

    Article  CAS  Google Scholar 

  12. Weissbach, L. et al. Identification of a human rasGAP-related protein containing calmodulin-binding motifs. J. Biol. Chem. 269, 20517–20521 (1994).

    CAS  PubMed  Google Scholar 

  13. Fukata, M. et al. Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109, 873–885 (2002).

    Article  CAS  Google Scholar 

  14. Watanabe, T. et al. Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration. Dev. Cell 7, 871–883 (2004).

    Article  CAS  Google Scholar 

  15. Hirotsune, S. et al. Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat. Genet. 19, 333–339 (1998).

    Article  CAS  Google Scholar 

  16. Rossi, D.J. & Slater, N.T. The developmental onset of NMDA receptor-channel activity during neuronal migration. Neuropharmacology 32, 1239–1248 (1993).

    Article  CAS  Google Scholar 

  17. Komuro, H. & Rakic, P. Orchestration of neuronal migration by activity of ion channels, neurotransmitter receptors, and intracellular Ca2+ fluctuations. J. Neurobiol. 37, 110–130 (1998).

    Article  CAS  Google Scholar 

  18. LoTurco, J.J., Blanton, M.G. & Kriegstein, A.R. Initial expression and endogenous activation of NMDA channels in early neocortical development. J. Neurosci. 11, 792–799 (1991).

    Article  CAS  Google Scholar 

  19. Monyer, H., Burnashev, N., Laurie, D.J., Sakmann, B. & Seeburg, P.H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12, 529–540 (1994).

    Article  CAS  Google Scholar 

  20. Meng, Y., Zhang, Y., Tregoubov, V., Falls, D.L. & Jia, Z. Regulation of spine morphology and synaptic function by LIMK and the actin cytoskeleton. Rev. Neurosci. 14, 233–240 (2003).

    Article  CAS  Google Scholar 

  21. Sin, W.C., Haas, K., Ruthazer, E.S. & Cline, H.T. Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases. Nature 419, 475–480 (2002).

    Article  CAS  Google Scholar 

  22. Schell, M.J., Brady, R.O., Jr, Molliver, M.E. & Snyder, S.H. D-serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors. J. Neurosci. 17, 1604–1615 (1997).

    Article  CAS  Google Scholar 

  23. Boehning, D. & Snyder, S.H. Novel neural modulators. Annu. Rev. Neurosci. 26, 105–131 (2003).

    Article  CAS  Google Scholar 

  24. Kim, P.M. et al. Serine racemase: activation by glutamate neurotransmission via glutamate receptor interacting protein and mediation of neuronal migration. Proc. Natl. Acad. Sci. USA 102, 2105–2110 (2005).

    Article  CAS  Google Scholar 

  25. Komuro, H. & Rakic, P. Intracellular Ca2+ fluctuations modulate the rate of neuronal migration. Neuron 17, 275–285 (1996).

    Article  CAS  Google Scholar 

  26. Mataraza, J.M., Briggs, M.W., Li, Z., Frank, R. & Sacks, D.B. Identification and characterization of the Cdc42-binding site of IQGAP1. Biochem. Biophys. Res. Commun. 305, 315–321 (2003).

    Article  CAS  Google Scholar 

  27. Briggs, M.W. & Sacks, D.B. IQGAP proteins are integral components of cytoskeletal regulation. EMBO Rep. 4, 571–574 (2003).

    Article  CAS  Google Scholar 

  28. Li, Q. & Stuenkel, E.L. Calcium negatively modulates calmodulin interaction with IQGAP1. Biochem. Biophys. Res. Commun. 317, 787–795 (2004).

    Article  CAS  Google Scholar 

  29. Perez, F., Diamantopoulos, G.S., Stalder, R. & Kreis, T.E. CLIP-170 highlights growing microtubule ends in vivo. Cell 96, 517–527 (1999).

    Article  CAS  Google Scholar 

  30. Schuyler, S.C. & Pellman, D. Microtubule “plus-end-tracking proteins”: the end is just the beginning. Cell 105, 421–424 (2001).

    Article  CAS  Google Scholar 

  31. Rickard, J.E. & Kreis, T.E. CLIPs for organellemicrotubule interactions. Trends Cell Biol. 6, 178–183 (1996).

    Article  CAS  Google Scholar 

  32. Coquelle, F.M. et al. LIS1, CLIP-170's key to the dynein/dynactin pathway. Mol. Cell. Biol. 22, 3089–3102 (2002).

    Article  CAS  Google Scholar 

  33. Miki, H., Sasaki, T., Takai, Y. & Takenawa, T. Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391, 93–96 (1998).

    Article  CAS  Google Scholar 

  34. Kjoller, L. & Hall, A. Signaling to Rho GTPases. Exp. Cell Res. 253, 166–179 (1999).

    Article  CAS  Google Scholar 

  35. Waterman-Storer, C.M. & Salmon, E. Positive feedback interactions between microtubule and actin dynamics during cell motility. Curr. Opin. Cell Biol. 11, 61–67 (1999).

    Article  CAS  Google Scholar 

  36. Palazzo, A.F., Eng, C.H., Schlaepfer, D.D., Marcantonio, E.E. & Gundersen, G.G. Localized stabilization of microtubules by integrin- and FAK-facilitated Rho signaling. Science 303, 836–839 (2004).

    Article  CAS  Google Scholar 

  37. Messersmith, E.K., Feller, M.B., Zhang, H. & Shatz, C.J. Migration of neocortical neurons in the absence of functional NMDA receptors. Mol. Cell. Neurosci. 9, 347–357 (1997).

    Article  CAS  Google Scholar 

  38. Meng, Y. et al. Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 35, 121–133 (2002).

    Article  CAS  Google Scholar 

  39. Bashour, A.M., Fullerton, A.T., Hart, M.J. & Bloom, G.S. IQGAP1, a Rac- and Cdc42-binding protein, directly binds and cross-links microfilaments. J. Cell Biol. 137, 1555–1566 (1997).

    Article  CAS  Google Scholar 

  40. Mateer, S.C. et al. The mechanism for regulation of the F-actin binding activity of IQGAP1 by calcium/calmodulin. J. Biol. Chem. 277, 12324–12333 (2002).

    Article  CAS  Google Scholar 

  41. Ho, Y.D., Joyal, J.L., Li, Z. & Sacks, D.B. IQGAP1 integrates Ca2+/calmodulin and Cdc42 signaling. J. Biol. Chem. 274, 464–470 (1999).

    Article  CAS  Google Scholar 

  42. Li, Z. & Sacks, D.B. Elucidation of the interaction of calmodulin with the IQ motifs of IQGAP1. J. Biol. Chem. 278, 4347–4352 (2003).

    Article  CAS  Google Scholar 

  43. Wolenski, J.S. Regulation of calmodulin-binding myosins. Trends Cell Biol. 5, 310–316 (1995).

    Article  CAS  Google Scholar 

  44. Tsai, J.W., Chen, Y., Kriegstein, A.R. & Vallee, R.B. LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J. Cell Biol. 170, 935–945 (2005).

    Article  CAS  Google Scholar 

  45. Gasser, U.E. & Hatten, M.E. Neuron-glia interactions of rat hippocampal cells in vitro: glial-guided neuronal migration and neuronal regulation of glial differentiation. J. Neurosci. 10, 1276–1285 (1990).

    Article  CAS  Google Scholar 

  46. Smith, D.S. et al. Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1. Nat. Cell Biol. 2, 767–775 (2000).

    Article  CAS  Google Scholar 

  47. Assadi, A.H. et al. Interaction of reelin signaling and Lis1 in brain development. Nat. Genet. 35, 270–276 (2003).

    Article  CAS  Google Scholar 

  48. Lansbergen, G. et al. Conformational changes in CLIP-170 regulate its binding to microtubules and dynactin localization. J. Cell Biol. 166, 1003–1014 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by the US National Institute of Neurological Disorders and Stroke (RO1NS35515 to M.E.R., PO1NS39404 to M.E.R. and A.W.B.) and National Institute of Child Health and Development (RO1HD19950 to P.C.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Elizabeth Ross.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

D-Serine fails to stimulate Lis1+/− neuronal migration despite enhancing Ca2+ fluctuations. (PDF 158 kb)

Supplementary Fig. 2

Bioactivity of plasmids expressing constitutively active G12V-Cdc42 (Cdc42ca) or dominant negative T17N-Cdc42 (Cdc42dn). (PDF 722 kb)

Supplementary Fig. 3

Demonstration of IQGAP1 down-regulation by shRNAi. (PDF 164 kb)

Supplementary Fig. 4

Demonstration of CLIP-170 down-regulation by shRNAi. (PDF 178 kb)

Supplementary Fig. 5

Model for Lis1 role in Ca2+ modulation of Rho GTPases and neuronal cytoskeleton. (PDF 816 kb)

Supplementary Fig. 6

Phosphorylation of Lis1 is enhanced by D-serine treatment. (PDF 147 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kholmanskikh, S., Koeller, H., Wynshaw-Boris, A. et al. Calcium-dependent interaction of Lis1 with IQGAP1 and Cdc42 promotes neuronal motility. Nat Neurosci 9, 50–57 (2006). https://doi.org/10.1038/nn1619

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1619

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing