Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bipolar cell pathways for color and luminance vision in a dichromatic mammalian retina

Abstract

The mammalian retina is fundamentally dichromatic, with trichromacy only recently emerging in some primates. In dichromats, an array of short wavelength–sensitive (S, blue) and middle wavelength–sensitive (M, green) cones is sampled by approximately ten bipolar cell types, and the sampling pattern determines how retinal ganglion cells and ultimately higher visual centers encode color and luminance. By recording from cone–bipolar cell pairs in the retina of the ground squirrel, we show that the bipolar cell types sample cone signals in three ways: one type receives input exclusively from S-cones, two types receive mixed S/M-cone input and the remaining types receive an almost pure M-cone signal. Bipolar cells that carry S- or M-cone signals can have a role in color discrimination and may contact color-opponent ganglion cells. Bipolar cells that sum signals from S- and M-cones may signal to ganglion cells that encode luminance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Properties of the S-cone Ca2+ current.
Figure 2: Reconstructions of dye-filled bipolar cells arranged according to the level of axon terminal ramification.
Figure 3: S-cone bipolar cells exclusively contact S-cones.
Figure 4: Synapses between S-cones and b2 bipolar cells.
Figure 5: Synapses between S-cones and b5 bipolar cells.
Figure 6: Examples of cone bipolar cells that did not contact S-cones within their dendritic fields.
Figure 7: Bipolar cells that respond to the depolarization of an M-cone but not an S-cone located within their dendritic fields.
Figure 8: Summary of the anatomical data.

Similar content being viewed by others

References

  1. Curcio, C.A. et al. Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. J. Comp. Neurol. 312, 610–624 (1991).

    Article  CAS  Google Scholar 

  2. Kryger, Z., Galli-Resta, L., Jacobs, G.H. & Reese, B.E. The topography of rod and cone photoreceptors in the retina of the ground squirrel. Vis. Neurosci. 15, 685–691 (1998).

    Article  CAS  Google Scholar 

  3. Calkins, D.J. Seeing with S cones. Prog. Retin. Eye Res. 20, 255–287 (2001).

    Article  CAS  Google Scholar 

  4. Li, W. & DeVries, S.H. Separate blue and green cone networks in the mammalian retina. Nat. Neurosci. 7, 751–756 (2004).

    Article  CAS  Google Scholar 

  5. Mariani, A.P. Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive. Nature 308, 184–186 (1984).

    Article  CAS  Google Scholar 

  6. Kouyama, N. & Marshak, D.W. Bipolar cells specific for blue cones in the macaque retina. J. Neurosci. 12, 1233–1252 (1992).

    Article  CAS  Google Scholar 

  7. Calkins, D.J., Tsukamoto, Y. & Sterling, P. Microcircuitry and mosaic of a blue-yellow ganglion cell in the primate retina. J. Neurosci. 18, 3373–3385 (1998).

    Article  CAS  Google Scholar 

  8. Haverkamp, S. et al. The primordial, blue-cone color system of the mouse retina. J. Neurosci. 25, 5438–5445 (2005).

    Article  CAS  Google Scholar 

  9. Dacey, D.M. & Lee, B.B. The 'blue-ON' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367, 731–735 (1994).

    Article  CAS  Google Scholar 

  10. Boycott, B.B. & Wässle, H. Morphological classification of bipolar cells of the primate retina. Eur. J. Neurosci. 3, 1069–1088 (1991).

    Article  Google Scholar 

  11. Chan, T.L., Martin, P.R., Clunas, N. & Grünert, U. Bipolar cell diversity in the primate retina: morphologic and immunocytochemical analysis of a new world monkey, the marmoset Callithrix jacchus. J. Comp. Neurol. 437, 219–239 (2001).

    Article  CAS  Google Scholar 

  12. Lee, S.C., Jusuf, P.R. & Grünert, U. S-cone connections of the diffuse bipolar cell type DB6 in macaque monkey retina. J. Comp. Neurol. 474, 353–363 (2004).

    Article  Google Scholar 

  13. Herr, S., Klug, K., Sterling, P. & Schein, S. Inner S-cone bipolar cells provide all of the central elements for S cones in macaque retina. J. Comp. Neurol. 457, 185–201 (2003).

    Article  Google Scholar 

  14. Calkins, D.J., Tsukamoto, Y. & Sterling, P. Foveal cones form basal as well as invaginating junctions with diffuse ON bipolar cells. Vision Res. 36, 3373–3381 (1996).

    Article  CAS  Google Scholar 

  15. Calkins, D.J. Synaptic organization of cone pathways in the primate retina. in Color Vision: from Genes to Perception (eds. Gegenfurtner, K.R. & Sharpe, L.T.) Ch. 8, 163–179 (Cambridge University Press, Cambridge, UK, 1999).

    Google Scholar 

  16. Haverkamp, S., Grünert, U. & Wässle, H. Localization of kainate receptors at the cone pedicles of the primate retina. J. Comp. Neurol. 436, 471–486 (2001).

    Article  CAS  Google Scholar 

  17. Dacey, D.M. & Lee, B.B. Functional architecture of cone signal pathways in the primate retina. in Color Vision: from Gene to Perception (eds. Gegenfurtner, K.R. & Sharpe, L.T.) Ch. 9, 181–202 (Cambridge University Press, Cambridge, UK, 1999).

    Google Scholar 

  18. Sun, H., Smithson, H.E., Zaidi, Q. & Lee, B.B. Specificity of cone inputs to macaque retinal ganglion cells. J. Neurophysiol. 95, 837–849 (2006).

    Article  Google Scholar 

  19. Chatterjee, S. & Callaway, E.M. S cone contributions to the magnocellular visual pathway in macaque monkey. Neuron 35, 1135–1146 (2002).

    Article  CAS  Google Scholar 

  20. Reid, R.C. & Shapley, R.M. Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus. J. Neurosci. 22, 6158–6175 (2002).

    Article  CAS  Google Scholar 

  21. Seidemann, E., Poirson, A.B., Wandell, B.A. & Newsome, W.T. Color signals in area MT of the macaque monkey. Neuron 24, 911–917 (1999).

    Article  CAS  Google Scholar 

  22. Wandell, B.A. et al. Color signals in human motion-selective cortex. Neuron 24, 901–909 (1999).

    Article  CAS  Google Scholar 

  23. Dacey, D.M., Peterson, B.B., Robinson, F.R. & Gamlin, P.D. Fireworks in the primate retina: in vitro photodynamics reveals diverse LGN-projecting ganglion cell types. Neuron 37, 15–27 (2003).

    Article  CAS  Google Scholar 

  24. Jacobs, G.H. & Tootell, R.B. Spectral-response properties of optic-nerve fibers in the ground squirrel. J. Neurophysiol. 45, 891–902 (1981).

    Article  CAS  Google Scholar 

  25. Martin, P.R. Colour processing in the primate retina: recent progress. J. Physiol. (Lond.) 513, 631–638 (1998).

    Article  CAS  Google Scholar 

  26. Klug, K., Herr, S., Ngo, I.T., Sterling, P. & Schein, S. Macaque retina contains an S-cone OFF midget pathway. J. Neurosci. 23, 9881–9887 (2003).

    Article  CAS  Google Scholar 

  27. Schnapf, J.L., Nunn, B.J., Meister, M. & Baylor, D.A. Visual transduction in cones of the monkey Macaca fascicularis. J. Physiol. (Lond.) 427, 681–713 (1990).

    Article  CAS  Google Scholar 

  28. Kraft, T.W. Photocurrents of cone photoreceptors of the golden-mantled ground squirrel. J. Physiol. (Lond.) 404, 199–213 (1988).

    Article  CAS  Google Scholar 

  29. DeVries, S.H. & Schwartz, E.A. Kainate receptors mediate synaptic transmission between cones and 'Off' bipolar cells in a mammalian retina. Nature 397, 157–160 (1999).

    Article  CAS  Google Scholar 

  30. DeVries, S.H. Exocytosed protons feedback to suppress the Ca2+ current in mammalian cone photoreceptors. Neuron 32, 1107–1117 (2001).

    Article  CAS  Google Scholar 

  31. Yagi, T. & Macleish, P.R. Ionic conductances of monkey solitary cone inner segments. J. Neurophysiol. 71, 656–665 (1994).

    Article  CAS  Google Scholar 

  32. Vardi, N., Duvoisin, R., Wu, G. & Sterling, P. Localization of mGluR6 to dendrites of ON bipolar cells in primate retina. J. Comp. Neurol. 423, 402–412 (2000).

    Article  CAS  Google Scholar 

  33. Snellman, J. & Nawy, S. cGMP-dependent kinase regulates response sensitivity of the mouse ON bipolar cell. J. Neurosci. 24, 6621–6628 (2004).

    Article  CAS  Google Scholar 

  34. DeVries, S.H. Bipolar cells use kainate and AMPA receptors to filter visual information into separate channels. Neuron 28, 847–856 (2000).

    Article  CAS  Google Scholar 

  35. Cuenca, N. et al. The neurons of the ground squirrel retina as revealed by immunostains for calcium binding proteins and neurotransmitters. J. Neurocytol. 31, 649–666 (2002).

    Article  CAS  Google Scholar 

  36. DeVries, S.H., Qi, X., Smith, R., Makous, W. & Sterling, P. Electrical coupling between mammalian cones. Curr. Biol. 12, 1900–1907 (2002).

    Article  CAS  Google Scholar 

  37. West, R.W. Light and electron microscopy of the ground squirrel retina: functional considerations. J. Comp. Neurol. 168, 355–377 (1976).

    Article  CAS  Google Scholar 

  38. Linberg, K.A., Suemune, S. & Fisher, S.K. Retinal neurons of the California ground squirrel, Spermophilus beecheyi: a Golgi study. J. Comp. Neurol. 365, 173–216 (1996).

    Article  CAS  Google Scholar 

  39. Caldwell, J.H. & Daw, N.W. New properties of rabbit retinal ganglion cells. J. Physiol. (Lond.) 276, 257–276 (1978).

    Article  CAS  Google Scholar 

  40. Hochstein, S. & Shapley, R.M. Quantitative analysis of retinal ganglion cell classifications. J. Physiol. (Lond.) 262, 237–264 (1976).

    Article  CAS  Google Scholar 

  41. Zhang, J., Li, W., Hoshi, H., Mills, S.L. & Massey, S.C. Stratification of alpha ganglion cells and ON/OFF directionally selective ganglion cells in the rabbit retina. Vis. Neurosci. 22, 535–549 (2005).

    Article  CAS  Google Scholar 

  42. Dacey, D.M. & Brace, S. A coupled network for parasol but not midget ganglion cells in the primate retina. Vis. Neurosci. 9, 279–290 (1992).

    Article  CAS  Google Scholar 

  43. Chichilnisky, E.J. & Kalmar, R.S. Functional asymmetries in ON and OFF ganglion cells of primate retina. J. Neurosci. 22, 2737–2747 (2002).

    Article  CAS  Google Scholar 

  44. Jacoby, R.A., Wiechmann, A.F., Amara, S.G., Leighton, B.H. & Marshak, D.W. Diffuse bipolar cells provide input to OFF parasol ganglion cells in the macaque retina. J. Comp. Neurol. 416, 6–18 (2000).

    Article  CAS  Google Scholar 

  45. Yamada, E.S., Bordt, A.S. & Marshak, D.W. Wide-field ganglion cells in macaque retinas. Vis. Neurosci. 22, 383–393 (2005).

    Article  Google Scholar 

  46. Jacobs, G.H. Comparetive psychology of vision. in Handbook of Psychology Vol. 3 (eds. Gallagher, M. & Nelson, R.J.) Ch. 3, 47–70 (Wiley, New York, 2002).

    Google Scholar 

  47. Jacobs, G.H., Blakeslee, B. & Tootell, R.B. Color-discrimination tests on fibers in ground squirrel optic nerve. J. Neurophysiol. 45, 903–914 (1981).

    Article  CAS  Google Scholar 

  48. Chichilnisky, E.J. & Baylor, D.A. Receptive-field microstructure of blue-yellow ganglion cells in primate retina. Nat. Neurosci. 2, 889–893 (1999).

    Article  CAS  Google Scholar 

  49. Dacey, D.M. et al. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433, 749–754 (2005).

    Article  CAS  Google Scholar 

  50. Lee, S.C., Telkes, I. & Grünert, U. S-cones do not contribute to the OFF-midget pathway in the retina of the marmoset, Callithrix jacchus. Eur. J. Neurosci. 22, 437–447 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank S. Massey, J. Singer, S. Saszik and A. Light for critical reading of the manuscript. This work was supported by US National Institutes of Health grant (EY12141), a Research to Prevent Blindness grant to S.H.D. and a Fight For Sight Fellowship to W.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Morphological consistency of identified bipolar cell types. (PDF 403 kb)

Supplementary Fig. 2

Diagram of S- and M-cone inputs to different bipolar cell pathways. (PDF 1170 kb)

Supplementary Methods (PDF 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., DeVries, S. Bipolar cell pathways for color and luminance vision in a dichromatic mammalian retina. Nat Neurosci 9, 669–675 (2006). https://doi.org/10.1038/nn1686

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1686

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing