Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synapse-specific plasticity and compartmentalized signaling in cerebellar stellate cells

Abstract

Here we demonstrate that cerebellar stellate cells diffusionally isolate synaptically evoked signals in dendrites and are capable of input-specific synaptic plasticity. Sustained activity of parallel fibers induces a form of long-term depression that requires opening of calcium (Ca2+)-permeable AMPA-type glutamate receptors (CP-AMPARs) and signaling through class 1 metabotropic glutamate receptors (mGluR1) and CB1 receptors. This depression is induced by postsynaptic increases in Ca2+ concentration ([Ca2+]) and is limited to activated synapses. To understand how synapse-specific plasticity is induced by diffusible second messengers in aspiny dendrites, we examined diffusion of Ca2+ and small molecules within stellate cell dendrites. Activation of a single parallel fiber opened CP-AMPARs, generating long-lived Ca2+ transients that were confined to submicron dendritic stretches. The diffusion of Ca2+ was severely retarded due to interactions with parvalbumin and a general restriction of small molecule mobility. Thus stellate cell dendrites spatially restrict signaling cascades that lead from CP-AMPAR activation to endocannabinoid production and trigger the selective regulation of active synapses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trains of stimuli induce input-specific LTD at the parallel fiber–to–stellate cell synapse.
Figure 2: SCLTD requires AMPAR-mediated postsynaptic Ca2+ increases and CB1 receptor activation.
Figure 3: Synaptically evoked Ca2+ transients in dendrites of cerebellar stellate cells.
Figure 4: Δ[Ca2+]syn is restricted to submicron dendritic regions.
Figure 5: CP-AMPARs mediate Δ[Ca2+]syn.
Figure 6: Mechanisms of Ca2+ compartmentalization in stellate cell dendrites.
Figure 7: Δ[Ca]syn remains compartmentalized during sustained synaptic activity.
Figure 8: The input specificity of LTD is maintained over short distances.

Similar content being viewed by others

References

  1. Nimchinsky, E.A., Sabatini, B.L. & Svoboda, K. Structure and function of dendritic spines. Annu. Rev. Physiol. 64, 313–353 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Palay, S.L. & Chan-Palay, V. The Stellate Cell, 216–233 (Strange-Verlag, New York, 1974).

    Google Scholar 

  3. Freund, T.F. & Buzsaki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. McMahon, L.L. & Kauer, J.A. Hippocampal interneurons express a novel form of synaptic plasticity. Neuron 18, 295–305 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Cowan, A.I., Stricker, C., Reece, L.J. & Redman, S.J. Long-term plasticity at excitatory synapses on aspinous interneurons in area CA1 lacks synaptic specificity. J. Neurophysiol. 79, 13–20 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Rozsa, B., Zelles, T., Vizi, E.S. & Lendvai, B. Distance-dependent scaling of calcium transients evoked by backpropagating spikes and synaptic activity in dendrites of hippocampal interneurons. J. Neurosci. 24, 661–670 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaiser, K.M., Lubke, J., Zilberter, Y. & Sakmann, B. Postsynaptic calcium influx at single synaptic contacts between pyramidal neurons and bitufted interneurons in layer 2/3 of rat neocortex is enhanced by backpropagating action potentials. J. Neurosci. 24, 1319–1329 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Topolnik, L., Congar, P. & Lacaille, J.C. Differential regulation of metabotropic glutamate receptor- and AMPA receptor-mediated dendritic Ca2+ signals by presynaptic and postsynaptic activity in hippocampal interneurons. J. Neurosci. 25, 990–1001 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goldberg, J.H., Tamas, G., Aronov, D. & Yuste, R. Calcium microdomains in aspiny dendrites. Neuron 40, 807–821 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Hausser, M. & Clark, B.A. Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19, 665–678 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, S.Q. & Cull-Candy, S.G. Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature 405, 454–458 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Rancillac, A. & Crepel, F. Synapses between parallel fibres and stellate cells express long-term changes in synaptic efficacy in rat cerebellum. J. Physiol. (Lond.) 554, 707–720 (2004).

    Article  CAS  Google Scholar 

  13. Kosaka, T., Kosaka, K., Nakayama, T., Hunziker, W. & Heizmann, C.W. Axons and axon terminals of cerebellar Purkinje cells and basket cells have higher levels of parvalbumin immunoreactivity than somata and dendrites: quantitative analysis by immunogold labeling. Exp. Brain Res. 93, 483–491 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Bowie, D. & Mayer, M.L. Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 15, 453–462 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Kamboj, S.K., Swanson, G.T. & Cull-Candy, S.G. Intracellular spermine confers rectification on rat calcium-permeable AMPA and kainate receptors. J. Physiol. (Lond.) 486, 297–303 (1995).

    Article  CAS  Google Scholar 

  16. Koh, D.S., Burnashev, N. & Jonas, P. Block of native Ca(2+)-permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. J. Physiol. (Lond.) 486, 305–312 (1995).

    Article  CAS  Google Scholar 

  17. Carter, A.G. & Regehr, W.G. Prolonged synaptic currents and glutamate spillover at the parallel fiber to stellate cell synapse. J. Neurosci. 20, 4423–4434 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Washburn, M.S. & Dingledine, R. Block of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by polyamines and polyamine toxins. J. Pharmacol. Exp. Ther. 278, 669–678 (1996).

    CAS  PubMed  Google Scholar 

  19. Herkenham, M. Cannabinoid receptor localization in brain: relationship to motor and reward systems. Ann. NY Acad. Sci. 654, 19–32 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Kreitzer, A.C. & Regehr, W.G. Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 29, 717–727 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Maejima, T., Ohno-Shosaku, T. & Kano, M. Endogenous cannabinoid as a retrograde messenger from depolarized postsynaptic neurons to presynaptic terminals. Neurosci. Res. 40, 205–210 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Rancillac, A. & Barbara, J.G. Frequency-dependent recruitment of inhibition mediated by stellate cells in the rat cerebellar cortex. J. Neurosci. Res. 80, 414–423 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Brown, S.P., Brenowitz, S.D. & Regehr, W.G. Brief presynaptic bursts evoke synapse-specific retrograde inhibition mediated by endogenous cannabinoids. Nat. Neurosci. 6, 1048–1057 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Brenowitz, S.D. & Regehr, W.G. Calcium dependence of retrograde inhibition by endocannabinoids at synapses onto Purkinje cells. J. Neurosci. 23, 6373–6384 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Safo, P.K. & Regehr, W.G. Endocannabinoids control the induction of cerebellar LTD. Neuron 48, 647–659 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Sabatini, B.L., Oertner, T.G. & Svoboda, K. The life cycle of Ca2+ ions in dendritic spines. Neuron 33, 439–452 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Carter, A.G. & Regehr, W.G. Quantal events shape cerebellar interneuron firing. Nat. Neurosci. 5, 1309–1318 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Zador, A. & Koch, C. Linearized models of calcium dynamics: formal equivalence to the cable equation. J. Neurosci. 14, 4705–4715 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gabso, M., Neher, E. & Spira, M.E. Low mobility of the Ca2+ buffers in axons of cultured Aplysia neurons. Neuron 18, 473–481 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Toth, K. & McBain, C.J. Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons. Nat. Neurosci. 1, 572–578 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Neher, E. & Augustine, G.J. Calcium gradients and buffers in bovine chromaffin cells. J. Physiol. (Lond.) 450, 273–301 (1992).

    Article  CAS  Google Scholar 

  32. Zhou, Z. & Neher, E. Mobile and immobile calcium buffers in bovine adrenal chromaffin cells. J. Physiol. (Lond.) 469, 245–273 (1993).

    Article  CAS  Google Scholar 

  33. Kushmerick, M.J. & Podolsky, R.J. Ionic mobility in muscle cells. Science 166, 1297–1298 (1969).

    Article  CAS  PubMed  Google Scholar 

  34. Michailova, A., DelPrincipe, F., Egger, M. & Niggli, E. Spatiotemporal features of Ca2+ buffering and diffusion in atrial cardiac myocytes with inhibited sarcoplasmic reticulum. Biophys. J. 83, 3134–3151 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hou, T.T., Johnson, J.D. & Rall, J.A. Parvalbumin content and Ca2+ and Mg2+ dissociation rates correlated with changes in relaxation rate of frog muscle fibres. J. Physiol. (Lond.) 441, 285–304 (1991).

    Article  CAS  Google Scholar 

  36. Lee, S.H., Schwaller, B. & Neher, E. Kinetics of Ca2+ binding to parvalbumin in bovine chromaffin cells: implications for [Ca2+] transients of neuronal dendrites. J. Physiol. (Lond.) 525, 419–432 (2000).

    Article  CAS  Google Scholar 

  37. Li-Smerin, Y., Levitan, E.S. & Johnson, J.W. Free intracellular Mg2+ concentration and inhibition of NMDA responses in cultured rat neurons. J. Physiol. (Lond.) 533, 729–743 (2001).

    Article  CAS  Google Scholar 

  38. Carter, A.G. & Sabatini, B.L. State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44, 483–493 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Bloodgood, B.L. & Sabatini, B.L. Neuronal activity regulates diffusion across the neck of dendritic spines. Science 310, 866–869 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Jasuja, R., Keyoung, J., Reid, G.P., Trentham, D.R. & Khan, S. Chemotactic responses of Escherichia coli to small jumps of photoreleased L-aspartate. Biophys. J. 76, 1706–1719 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xia, P., Bungay, P.M., Gibson, C.C., Kovbasnjuk, O.N. & Spring, K.R. Diffusion coefficients in the lateral intercellular spaces of Madin-Darby canine kidney cell epithelium determined with caged compounds. Biophys. J. 74, 3302–3312 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Svoboda, K., Tank, D.W. & Denk, W. Direct measurement of coupling between dendritic spines and shafts. Science 272, 716–719 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Levenes, C., Daniel, H., Soubrie, P. & Crepel, F. Cannabinoids decrease excitatory synaptic transmission and impair long-term depression in rat cerebellar Purkinje cells. J. Physiol. (Lond.) 510, 867–879 (1998).

    Article  CAS  Google Scholar 

  44. Maejima, T. et al. Synaptically driven endocannabinoid release requires Ca2+-assisted metabotropic glutamate receptor subtype 1 to phospholipase Cbeta4 signaling cascade in the cerebellum. J. Neurosci. 25, 6826–6835 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Allbritton, N.L., Meyer, T. & Stryer, L. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258, 1812–1815 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Strautman, A.F., Cork, R.J. & Robinson, K.R. The distribution of free calcium in transected spinal axons and its modulation by applied electrical fields. J. Neurosci. 10, 3564–3575 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Popov, S. & Poo, M.M. Diffusional transport of macromolecules in developing nerve processes. J. Neurosci. 12, 77–85 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ellis, R.J. Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 26, 597–604 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Yasuda, R. et al. Imaging calcium concentration dynamics in small neuronal compartments. Sci. STKE 2004, pl5 (2004).

    PubMed  Google Scholar 

  50. Pologruto, T.A., Sabatini, B.L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Sabatini lab and W. Regehr for helpful discussions, and J. Corrie and D. Ogden for the gift of NPE-HPTS. This work was funded by the National Institutes of Neurological Disorders and Stroke (1 F31 NS049655-01) and Quan predoctoral fellowships to G.J.S.L., and a Burroughs Wellcome Fund Career Award, a Searle Scholar award, and McKnight Foundation Technological Innovations Awards to B.L.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo L Sabatini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Time course of an experiment showing the increase in failure rate after the induction of SCLTD. (PDF 191 kb)

Supplementary Fig. 2

Cyclopyazonic acid (CPA) abolishes caffeine-induced Ca2+ transients in cerebellar Purkinje cells. (PDF 3354 kb)

Supplementary Fig. 3

Summary of EPSC amplitudes in the tetanized and control pathways in the presence of the class 1 mGluR antagonist CPCCOEt (50 μM) (n = 7). (PDF 200 kb)

Supplementary Fig. 4

ΔG/Rsyn plotted against EPSC amplitude for 528 trials from the cells used in Figure 4 (n = 13 cells). (PDF 329 kb)

Supplementary Fig. 5

Analytical model of Ca2+ diffusion and clearance in SC dendrites. (PDF 616 kb)

Supplementary Methods (PDF 309 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soler-Llavina, G., Sabatini, B. Synapse-specific plasticity and compartmentalized signaling in cerebellar stellate cells. Nat Neurosci 9, 798–806 (2006). https://doi.org/10.1038/nn1698

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1698

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing