Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Predictive remapping of visual features precedes saccadic eye movements

Abstract

The frequent occurrence of saccadic eye movements raises the question of how information is combined across separate glances into a stable, continuous percept. Here I show that visual form processing is altered at both the current fixation position and the location of the saccadic target before the saccade. When human observers prepared to follow a displacement of the stimulus with the eyes, visual form adaptation was transferred from current fixation to the future gaze position. This transfer of adaptation also influenced the perception of test stimuli shown at an intermediate position between fixation and saccadic target. Additionally, I found a presaccadic transfer of adaptation when observers prepared to move their eyes toward a stationary adapting stimulus in peripheral vision. The remapping of visual processing, demonstrated here with form adaptation, may help to explain our impression of a smooth transition, with no temporal delay, of visual perception across glances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of the first experiment.
Figure 2: The proportion of full TAE measured for test stimuli presented at varying time periods before or after the saccade.
Figure 3: The proportion of full TAE as a function of the timing of the test stimulus in experiments 2 and 3.

Similar content being viewed by others

References

  1. Robinson, D.A. The mechanics of human saccadic eye movements. J. Physiol. (Lond.) 174, 245–264 (1964).

    Article  CAS  Google Scholar 

  2. Carpenter, R.H.S. Movements of the Eyes 2nd edn. (Pion, London, 1988).

    Google Scholar 

  3. O'Regan, J.K., Rensink, R.A. & Clark, J.J. Change-blindness as a result of 'mudsplashes'. Nature 398, 34 (1999).

    Article  CAS  Google Scholar 

  4. McConkie, G.W. & Zola, D. Is visual information integrated across successive fixations in reading? Percept. Psychophys. 25, 221–224 (1979).

    Article  CAS  Google Scholar 

  5. Duhamel, J.R., Colby, C.L. & Goldberg, M.E. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90–92 (1992).

    Article  CAS  Google Scholar 

  6. Kusunoki, M. & Goldberg, M.E. The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. J. Neurophysiol. 89, 1519–1527 (2003).

    Article  Google Scholar 

  7. Nakamura, K. & Colby, C.L. Updating of the visual representation in monkey striate and extrastriate cortex during saccades. Proc. Natl. Acad. Sci. USA 99, 4026–4031 (2002).

    Article  CAS  Google Scholar 

  8. Galletti, C., Battaglini, P.P. & Fattori, P. Parietal neurons encoding spatial locations in craniotopic coordinates. Exp. Brain Res. 96, 221–229 (1993).

    Article  CAS  Google Scholar 

  9. Duhamel, J.R., Bremmer, F., BenHamed, S. & Graf, W. Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389, 845–848 (1997).

    Article  CAS  Google Scholar 

  10. d'Avossa, G. et al. Spatiotopic selectivity of BOLD responses to visual motion in human area MT. Nat. Neurosci. 10, 249–255 (2007).

    Article  CAS  Google Scholar 

  11. Georgeson, M.A. Psychophysical hallucinations of orientation and spatial frequency. Perception 5, 99–111 (1976).

    Article  CAS  Google Scholar 

  12. Blakemore, C. & Campbell, F.W. On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J. Physiol. (Lond.) 203, 237–260 (1969).

    Article  CAS  Google Scholar 

  13. Parker, D.M. Contrast and size variables and the tilt after-effect. Q. J. Exp. Psychol. 24, 1–7 (1972).

    Article  CAS  Google Scholar 

  14. He, S. & MacLeod, D.I. Orientation selective adaptation and tilt after-effect from invisible patterns. Nature 411, 473–476 (2001).

    Article  CAS  Google Scholar 

  15. Melcher, D. & Morrone, M.C. Spatiotopic temporal integration of visual motion across saccadic eye movements. Nat. Neurosci. 6, 877–881 (2003).

    Article  CAS  Google Scholar 

  16. Melcher, D. Spatiotopic transfer of visual form adaptation across saccadic eye movements. Curr. Biol. 15, 1745–1748 (2005).

    Article  CAS  Google Scholar 

  17. Merriam, E.P. & Colby, C.L. Active vision in parietal and extrastriate cortex. Neuroscientist 11, 484–493 (2005).

    Article  Google Scholar 

  18. Sommer, M.A. & Wurtz, R.H. Influence of the thalamus on spatial vision processing in frontal cortex. Nature 444, 374–377 (2006).

    Article  CAS  Google Scholar 

  19. Umeno, M.M. & Goldberg, M.E. Spatial processing in the monkey frontal eye fields I: predictive visual responses. J. Neurophysiol. 78, 1373–1383 (1997).

    Article  CAS  Google Scholar 

  20. Matin, L. & Pearce, D.G. Visual perception of direction for stimuli flashed during voluntary saccadic eye movements. Science 148, 1485–1487 (1965).

    Article  CAS  Google Scholar 

  21. Ross, J., Morrone, M.C., Goldberg, M.E. & Burr, D.C. Changes in visual perception at the time of saccades. Trends Neurosci. 24, 113–121 (2001).

    Article  CAS  Google Scholar 

  22. Morrone, M.C., Ross, J. & Burr, D. Saccadic eye movements cause compression of time as well as space. Nat. Neurosci. 8, 950–954 (2005).

    Article  CAS  Google Scholar 

  23. Melcher, D. Persistence of visual memory for scenes. Nature 412, 401 (2001).

    Article  CAS  Google Scholar 

  24. Georgeson, M. Visual aftereffects: cortical neurons change their tune. Curr. Biol. 14, 751–753 (2004).

    Article  Google Scholar 

  25. Khayat, P.S., Spekreijse, H. & Roelfsema, P.R. Correlates of transsacadic integration in the primary visual cortex of the monkey. Proc. Natl. Acad. Sci. USA 101, 12712–12717 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the British Academy and the Fondazione Cassa di Risparmio di Trento e Rovereto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Melcher.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Fig. 1

Measurement of the functional extent of tilt adaptation for each participant. (PDF 5 kb)

Supplementary Fig. 2

Control experiment to test whether attention shifts would lead to remapping of tilt adaptation. (PDF 49 kb)

Supplementary Fig. 3

Control experiment to measure the ability of observers to perceive and report the brief test stimulus. (PDF 1905 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melcher, D. Predictive remapping of visual features precedes saccadic eye movements. Nat Neurosci 10, 903–907 (2007). https://doi.org/10.1038/nn1917

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1917

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing