Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Motion illusions as optimal percepts

Abstract

The pattern of local image velocities on the retina encodes important environmental information. Although humans are generally able to extract this information, they can easily be deceived into seeing incorrect velocities. We show that these 'illusions' arise naturally in a system that attempts to estimate local image velocity. We formulated a model of visual motion perception using standard estimation theory, under the assumptions that (i) there is noise in the initial measurements and (ii) slower motions are more likely to occur than faster ones. We found that specific instantiation of such a velocity estimator can account for a wide variety of psychophysical phenomena.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intersection of constraints.
Figure 2: Insufficiency of either VA, IOC or FT rules as an explanation for human perception of a horizontally moving rhombus.
Figure 3: Likelihood functions for three local patches of a horizontally translating diamond stimulus, computed using equation (4).
Figure 4: Predictions of ideal observer for rhombus stimuli.
Figure 5: Comparison of ideal observer (solid lines) to a variety of published psychophysical data (circles).

Similar content being viewed by others

References

  1. Nakayama, K. Biological image motion processing: a review. Vision Res. 25, 625–660 (1985).

    Article  CAS  Google Scholar 

  2. Horn, B.K.P. & Schunck, B.G. Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981).

    Article  Google Scholar 

  3. Lucas, B.D. & Kanade, T. An iterative image registration technique with an application to stereo vision. in Proceedings of the 7th International Joint Conference on Artificial Intelligence 674–679 (Morgan-Kaufmann, San Fransisco, 1981).

    Google Scholar 

  4. Wuerger, S., Shapley, R. & Rubin, N. On the visually perceived direction of motion by Hans Wallach: 60 years later. Perception 25, 1317–1367 (1996).

    Article  Google Scholar 

  5. Wallach, H. Ueber visuell whargenommene bewegungrichtung. Psychol. Forsch. 20, 325–380 (1935).

    Article  Google Scholar 

  6. Marr, D. & Ullman, S. Directional selectivity and its use in early visual processing. Proc. R. Soc. Lond. B Biol. Sci. 211, 151–180 (1981).

    Article  CAS  Google Scholar 

  7. Adelson, E. & Movshon, J. Phenomenal coherence of moving visual patterns. Nature 300, 523–525 (1982).

    Article  CAS  Google Scholar 

  8. Movshon, A., Adelson, E., Gizzi, M. & Newsome, W. The analysis of moving visual patterns. Exp. Brain Res. 11, 117–152 (1986).

    Google Scholar 

  9. Welch, L. The perception of moving plaids reveals two processing stages. Nature 337, 734–736 (1989).

    Article  CAS  Google Scholar 

  10. Morgan, M. Spatial filtering precedes motion detection. Nature 355, 344–346 (1992).

    Article  CAS  Google Scholar 

  11. Schrater, P., Knill, D. & Simoncelli, E. Mechanisms of visual motion detection. Nat. Neurosci. 3, 64–68 (2000).

    Article  CAS  Google Scholar 

  12. Rodman, H. & Albright, T. Single-unit analysis of pattern motion selective properties in the middle temporal visual area MT. Exp. Brain Res. 75, 53–64 (1989).

    Article  CAS  Google Scholar 

  13. Movshon, J.A. & Newsome, W.T. Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. Vis. Neurosci. 16, 7733–7741 (1996).

    Article  CAS  Google Scholar 

  14. Okamoto, H. et al. MT neurons in the macaque exhibited two types of bimodal direction tuning as predicted by a model for visual motion detection. Vision Res. 39, 3465–3479 (1999).

    Article  CAS  Google Scholar 

  15. Ferrera, V. & Wilson, H. Perceived direction of moving two-dimensional patterns. Vision Res. 30, 273–287 (1990).

    Article  CAS  Google Scholar 

  16. Mingolla, E., Todd, J. & Norman, J. The perception of globally coherent motion. Vision Res. 32, 1015–1031 (1992).

    Article  CAS  Google Scholar 

  17. Yo, C. & Wilson, H. Perceived direction of moving two-dimensional patterns depends on duration, contrast, and eccentricity. Vision Res. 32, 135–147 (1992).

    Article  CAS  Google Scholar 

  18. Burke, D. & Wenderoth, P. The effect of interactions between one-dimensional component gratings on two dimensional motion perception. Vision Res. 33, 343–350 (1993).

    Article  CAS  Google Scholar 

  19. Bowns, L. Evidence for a feature tracking explanation of why type II plaids move in the vector sum directions at short durations. Vision Res. 36, 3685–3694 (1996).

    Article  CAS  Google Scholar 

  20. Stone, L., Watson, A. & Mulligan, J. Effect of contrast on the perceived direction of a moving plaid. Vision Res. 30, 1049–1067 (1990).

    Article  CAS  Google Scholar 

  21. Rubin, N. & Hochstein, S. Isolating the effect of one-dimensional motion signals on the perceived direction of moving two-dimensional objects. Vision Res. 33, 1385–1396 (1993).

    Article  CAS  Google Scholar 

  22. Helmholtz, H. Treatise on Physiological Optics (Thoemmes, Bristol, UK, 2000; original publication 1866).

    Google Scholar 

  23. Knill, D. & Richards, W. Perception as Bayesian Inference (Cambridge Univ. Press, Cambridge, 1996).

    Book  Google Scholar 

  24. Ascher, D. & Grzywacz, N. A Bayesian model for the measurement of visual velocity. Vision Res. 40, 3427–3434 (2000).

    Article  CAS  Google Scholar 

  25. Koechlin, E., Anton, J.L. & Burnod, Y. Bayesian inference in populations of cortical neurons: a model of motion integration and segmentation in area MT. Biol. Cybern. 80, 25–44 (1999).

    Article  CAS  Google Scholar 

  26. Simoncelli, E., Adelson, E. & Heeger, D. in Proc. IEEE Conf. Comput. Vision Pattern Recog. 310–315 (IEEE, Washington DC, 1991).

    Google Scholar 

  27. Heeger, D.J. & Simoncelli, E.P. in Spatial Vision in Humans and Robots Ch. 19 (eds. Harris, L. & Jenkin, M.) 367–392 (Cambridge Univ. Press, 1994).

    Google Scholar 

  28. Simoncelli, E.P. Distributed Representation and Analysis of Visual Motion. Thesis, Massachusetts Institute of Technology (1993).

    Google Scholar 

  29. Weiss, Y. Bayesian Motion Estimation and Segmentation. Thesis, Massachusetts Institute of Technology (1998).

    Google Scholar 

  30. Ullman, S. The Interpretation of Visual Motion (MIT Press, Cambridge, Massachusetts, 1979).

    Google Scholar 

  31. Stone, L. & Thompson, P. Human speed perception is contrast dependent. Vision Res. 32, 1535–1549 (1990).

    Article  Google Scholar 

  32. Lorenceau, J., Shiffrar, M., Wells, N. & Castet, E. Different motion sensitive units are involved in recovering the direction of moving lines. Vision Res. 33, 1207–1217 (1992).

    Article  Google Scholar 

  33. Thompson, P. Perceived rate of movement depends on contrast. Vision Res. 22, 377–380 (1982).

    Article  CAS  Google Scholar 

  34. Thompson, P., Stone, L. & Swash, S. Speed estimates from grating patches are not contrast normalized. Vision Res. 36, 667–674 (1996).

    Article  CAS  Google Scholar 

  35. Blakemore, M. & Snowden, R. The effect of contrast upon perceived speed: a general phenomenon? Perception 28, 33–48 (1999).

    Article  CAS  Google Scholar 

  36. Snowden, R.N., Stimpson, N. & Ruddle, S. Speed perception fogs up as visibility drops. Nature 392, 450 (1998).

    Article  CAS  Google Scholar 

  37. Wilson, H., Ferrera, V. & Yo, C. A psychophysically motivated model for two-dimensional motion perception. Vis. Neurosci. 9, 79–97 (1992).

    Article  CAS  Google Scholar 

  38. Weiss, Y. & Fleet, D. in Probabilistic Models of the Brain Ch. 4 (eds. Rao, R., Olshausen, B. & Lewicki, M.) 77–96 (MIT Press, Cambridge, Massachusetts, 2002).

    Google Scholar 

  39. Nowlan, S.J. & Sejnowski, T.J. A selection model for motion processing in area MT of primates. J. Neurosci. 15, 1195–1214 (1995).

    Article  CAS  Google Scholar 

  40. Simoncelli, E. & Heeger, D. A model of neuronal responses in visual area MT. Vision Res. 38, 743–761 (1998).

    Article  CAS  Google Scholar 

  41. Pouget, A., Dayan, P. & Zemel, R. Information processing with population codes. Nat. Rev. Neurosci. 1, 125–32 (2000).

    Article  CAS  Google Scholar 

  42. Grzywacz, N. & Yuille, A. Theories for the visual perception of local velocity and coherent motion. in Computational Models of Visual Processing (eds. Landy, J. & Movshon, J.) 231–252 (MIT Press, Cambridge, Massachusetts, 1991).

    Google Scholar 

Download references

Acknowledgements

Y.W. and E.H.A. were supported by US National Eye Institute R01 EY11005 to E.H.A. E.P.S. was supported by the Howard Hughes Medical Institute and the Sloan-Swartz Center for Theoretical Visual Neuroscience at New York University. We thank J. McDermott, M. Banks, M. Landy, W. Geisler and the anonymous referees for comments on previous versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yair Weiss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, Y., Simoncelli, E. & Adelson, E. Motion illusions as optimal percepts. Nat Neurosci 5, 598–604 (2002). https://doi.org/10.1038/nn0602-858

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn0602-858

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing