Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Detergent resistance as a tool in membrane research

Abstract

The biological membrane is a complicated matrix wherein different lipid environments are thought to exist. The more ordered or raft environment has been perceived biochemically accessible via its relative resistance to detergent. This paper outlines the protocols developed in our laboratory for the analysis of such detergent-resistant membranes (DRMs). We stress the fact that DRMs are artifactual in nature and should not be equivocated to lipid rafts, their usefulness being limited to assigning raft-association potential most convincingly when changes in DRM composition are induced by biochemically/physiologically relevant events. These protocols are completed in 1–2 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Triton X-100 (TX100) detergent-resistant membranes (DRMs) isolated from MDCK II cell homogenates using a linear sucrose gradient.
Figure 2: Triton X-100 (TX100) detergent-resistant membranes (DRMs) isolated from methyl-β-cyclodextrin treated (CD) and unmodified (−) MDCK II cell homogenates using a single-step OptiPrep gradient.

Similar content being viewed by others

References

  1. Rajendran, L. & Simons, K. Lipid rafts and membrane dynamics. J. Cell. Sci. 118, 1099–1102 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Pike, L.J. Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J. Lipid Res. 47, 1597–1598 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Hancock, J.F. Lipid rafts: contentious only from simplistic standpoints. Nat. Rev. Mol. Cell Biol. 7, 456–462 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lucero, H.A. & Robbins, P.W. Lipid rafts-protein association and the regulation of protein activity. Arch. Biochem. Biophys. 426, 208–224 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Meder, D. & Simons, K. Lipid rafts, caveolae, and membrane traffic. In Lipid Rafts and Caveolae. From Membrane Biophysics to Cell Biology (ed. Fielding, C.J.) 1.1–1.23 (Wiley-VGH Verlag GmbH & Co., Wienheim, Germany, 2006).

    Google Scholar 

  6. Schuck, S. & Simons, K. Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J. Cell Sci. 117, 5955–5964 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Simons, K. & Vaz, W.L. Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33, 269–295 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Meder, D., Moreno, M.J., Verkade, P., Vaz, W.L. & Simons, K. Phase coexistence and connectivity in the apical membrane of polarized epithelial cells. Proc. Natl. Acad. Sci. USA 103, 329–334 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Baumgart, T. et al. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc. Natl. Acad. Sci. USA 104, 3165–3170 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Brown, D.A. & Rose, K.J. Sorting of GPI-anchored proteins to glycolipid enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533–544 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Schroeder, R., London, E. & Brown, D. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc. Natl. Acad. Sci. USA 91, 12130–12134 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Kurzchalia, T.V., Hartmann, E. & Dupree, P. Guilty by insolubility—does a protein's detergent insolubility reflect caveolar location? Trends Cell Biol 5, 187–189 (1995).

    CAS  PubMed  Google Scholar 

  14. Lichtenberg, D., Goñi, F.M. & Heerklotz, H. Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem. Sci. 30, 430–436 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Brown, D.A. Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology 21, 430–439 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Helenius, A. & Simons, K. Solubilization of membranes by detergents. Biochim. Biophys. Acta 415, 29–79 (1975).

    Article  CAS  PubMed  Google Scholar 

  17. Ahmed, S.N., Brown, D.A. & London, E. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered phase in model membranes. Biochemistry 36, 10944–10953 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Sáez-Cirión, A. et al. Equilibrium and kinetic studies of the solubilization of phospholipid-cholesterol bilayers by C12E8. The influence of the lipid phase structure. Langmuir 16, 1960–1968 (2000).

    Article  Google Scholar 

  19. Xu, X. et al. Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide. J. Biol. Chem. 276, 33540–33546 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Dietrich, C. et al. Lipid rafts reconstituted in model membranes. Biophys. J. 80, 1417–1428 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Heerklotz, H. Triton promotes domain formation in lipid raft mixtures. Biophys. J. 83, 2693–2701 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heerklotz, H., Szadkowska, H., Anderson, T. & Seelig, J. The sensitivity of lipid domains to small perturbations demonstrated by the effect of Triton. J. Mol. Biol. 329, 793–799 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Montixi, C. et al. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J. 17, 5334–5348 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Röper, K., Corbeil, D. & Huttner, WB. Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat. Cell. Biol. 2, 582–592 (2000).

    Article  PubMed  Google Scholar 

  25. Radeva, G. & Sharom, F.J. Isolation and characterization of lipid rafts with different properties from RBL-2H3 (rat basophilic leukaemia) cells. Biochem. J. 380, 219–230 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alfalah, M. et al. A novel type of detergent-resistant membranes may contribute to an early protein sorting event in epithelial cells. J. Biol. Chem. 280, 42636–42643 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Schuck, S., Honsho, M., Ekroos, K., Shevchenko, A. & Simons, K. Resistance of cell membranes to different detergents. Proc. Natl. Acad. Sci. USA 100, 5795–5800 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Arni, S., Keilbaugh, S.A., Ostermeyer, A.G. & Brown, D.A. Association of GAP-43 with detergent-resistant membranes requires two palmitoylated cysteine residues. J. Biol. Chem. 273, 28478–28485 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Schuck, S., Honsho, M. & Simons, K. Detergent-resistant membranes and the use of cholesterol depletion. In Cell Biology: A Laboratory Handbook Vol. 2 (ed. Celis, J.E.) 1.5–1.9 (Elsevier Science, USA, 2006).

    Google Scholar 

  30. Ostermeyer, A.G., Beckrich, B.T., Ivarson, K.A., Grove, K.E. & Brown, D.A. Glycosphingolipids are not essential for formation of detergent-resistant membrane rafts in melanoma cells. Methyl-beta-cyclodextrin does not affect cell surface transport of a GPI-anchored protein. J. Biol. Chem. 274, 34459–34466 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Shvartsman, D.E., Kotler, M., Tall, R.D., Roth, M.G. & Henis, Y.I. Differently anchored influenza hemagglutinin mutants display distinct interaction dynamics with mutual rafts. J. Cell Biol. 163, 879–888 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Field, K.A., Holowka, D. & Baird, B. Fc epsilon RI-mediated recruitment of p53/56lyn to detergent-resistant membrane domains accompanies cellular signaling. Proc. Natl. Acad. Sci. USA 92, 9201–9205 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Stauffer, T.P. & Meyer, T. Compartmentalized IgE receptor-mediated signal transduction in living cells. J. Cell Biol. 139, 1447–1454 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Holowka, D., Sheets, E.D. & Baird, B. Interactions between FcεRI and lipid raft components are regulated by the actin cytoskeleton. J. Cell Sci. 113, 1009–1019 (2000).

    CAS  PubMed  Google Scholar 

  35. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Simons, K. & Ehehalt, R. Cholesterol, lipid rafts, and disease. J. Clin. Invest. 110, 597–603 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Korzeniowski, M., Kwiatkowska, K. & Sobota, A. Insights into the association of FcγRII and TCR with detergent-resistant membrane domains: isolation of the domains in detergent-free density gradients facilitates membrane fragment reconstitution. Biochemistry 42, 5358–5367 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Louvard, D. Apical membrane aminopeptidase appears at site of cell-cell contact in cultured kidney epithelial cells. Proc. Natl. Acad. Sci. USA 77, 4132–4136 (1980).

    Article  CAS  PubMed  Google Scholar 

  39. Holloway, P.W. A simple procedure for removal of Triton X-100 from protein samples. Anal. Biochem. 53, 304–308 (1973).

    Article  CAS  PubMed  Google Scholar 

  40. Fasman, D.G. (ed.) Practical Handbook of Biochemistry and Molecular Biology (CRC Press, Boston, Massachusetts, 1992).

    Google Scholar 

Download references

Acknowledgements

We thank S. Schuck (University of California, San Francisco) for his helpful review of the manuscript. D.L. was the recipient of an international NSERC PGS scholarship. Work was supported by DFG SFB TR13 and DFG 1175 grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Simons.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lingwood, D., Simons, K. Detergent resistance as a tool in membrane research. Nat Protoc 2, 2159–2165 (2007). https://doi.org/10.1038/nprot.2007.294

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.294

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing