Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Live imaging of synapse development and measuring protein dynamics using two-color fluorescence recovery after photo-bleaching at Drosophila synapses

Abstract

Here we describe how to anesthetize and image Drosophila larvae as to follow 'the life history' of identified synapses and synaptic components. This protocol is sensitive, for example, the distribution of glutamate receptors expressed at physiological levels can be monitored. Typically, 2–20 time points can be recorded in the intact organism. Finally, we discuss how to extract the kinetic information on protein dynamics from two-color fluorescence recovery after photo-bleaching (FRAP) measurements and give advice how to keep the in vivo imager's five arch enemies—limited temporal and spatial resolution, injury of the animal, inactivation of proteins and movement artifacts—in check. While we focus on synapses, as model structure, the protocol can easily be adapted to study other developmental processes such as muscle growth, gut development or tracheal branching.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transgenic lines particularly useful for in vivo imaging.
Figure 2: Assembly of the imaging chamber.
Figure 3: Quantification of fluorescence recovery after photo-bleaching (FRAP).
Figure 4: Anticipated results.

Similar content being viewed by others

References

  1. Walsh, M.K. & Lichtman, J.W. In vivo time-lapse imaging of synaptic takeover associated with naturally occurring synapse elimination. Neuron 37, 67–73 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Gray, N.W., Weimer, R.M., Bureau, I. & Svoboda, K. Rapid redistribution of synaptic PSD-95 in the neocortex in vivo. PLoS Biol. 4, e370 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rasse, T.M. et al. Glutamate receptor dynamics organizing synapse formation in vivo. Nat. Neurosci. 8, 898–905 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Sigrist, S.J., Reiff, D.F., Thiel, P.R., Steinert, J.R. & Schuster, C.M. Experience-dependent strengthening of Drosophila neuromuscular junctions. J. Neurosci. 23, 6546–6556 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zito, K., Parnas, D., Fetter, R.D., Isacoff, E.Y. & Goodman, C.S. Watching a synapse grow: noninvasive confocal imaging of synaptic growth in Drosophila. Neuron 22, 719–729 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Rasse, T.M. In Vivo Imaging of Long-term Changes in the Drosophila Neuromuscular Junction Dissertation. Göttingen, Germany: Ernst-August University (2004).

    Google Scholar 

  7. Qin, G. et al. Four different subunits are essential for expressing the synaptic glutamate receptor at neuromuscular junctions of Drosophila. J. Neurosci. 25, 3209–3218 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kawasaki, F., Zou, B., Xu, X. & Ordway, R.W. Active zone localization of presynaptic calcium channels encoded by the cacophony locus of Drosophila. J. Neurosci. 24, 282–285 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Wagh, D.A. et al. Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49, 833–844 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Sandstrom, D.J. Isoflurane depresses glutamate release by reducing neuronal excitability at the Drosophila neuromuscular junction. J. Physiol. 558, 489–502 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carlin, R.K. & Siekevitz, P. Plasticity in the central nervous system: do synapses divide? Proc. Natl. Acad. Sci. USA 80, 3517–3521 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tardin, C., Cognet, L., Bats, C., Lounis, B. & Choquet, D. Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J. 22, 4656–4665 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kittel, R.J. et al. Bruchpilot promotes active zone assembly, Ca2+-channel clustering, and vesicle release. Science 312, 1051–1054 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Klar, T.A., Engel, E. & Hell, S.W. Breaking Abbe's diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 64, 066613 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Kasthuri, N. & Lichtman, J.W. Structural dynamics of synapses in living animals. Curr. Opin. Neurobiol. 14, 105–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, Y.Q., Rodesch, C.K. & Broadie, K. Living synaptic vesicle marker: synaptotagmin-GFP. Genesis 34, 142–145 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Wucherpfennig, T., Wilsch-Brauninger, M. & Gonzalez-Gaitan, M. Role of Drosophila Rab5 during endosomal trafficking at the synapse and evoked neurotransmitter release. J. Cell Biol. 161, 609–624 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pilling, A.D., Horiuchi, D., Lively, C.M. & Saxton, W.M. Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol. Biol. Cell 17, 2057–2068 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bachmann, A. et al. Cell type-specific recruitment of Drosophila Lin-7 to distinct MAGUK-based protein complexes defines novel roles for Sdt and Dlg-S97. J. Cell Sci. 117, 1899–1909 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Bobinnec, Y., Morin, X. & Debec, A. Shaggy/GSK-3beta kinase localizes to the centrosome and to specialized cytoskeletal structures in Drosophila. Cell Motil. Cytoskeleton 63, 313–320 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, J. et al. Thirty-one flavors of Drosophila rab proteins. Genetics 176, 1307–1322 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grieder, N.C., de Cuevas, M. & Spradling, A.C. The fusome organizes the microtubule network during oocyte differentiation in Drosophila. Development 127, 4253–4264 (2000).

    CAS  PubMed  Google Scholar 

  24. Besse, F. et al. The Ig cell adhesion molecule Basigin controls compartmentalization and vesicle release at Drosophila melanogaster synapses. J. Cell Biol. 177, 843–855 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Yeh, E., Gustafson, K. & Boulianne, G.L. Green fluorescent protein as a vital marker and reporter of gene expression in Drosophila. Proc. Natl. Acad. Sci. USA 92, 7036–7040 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin, D.M. & Goodman, C.S. Ectopic and increased expression of Fasciclin II alters motoneuron growth cone guidance. Neuron 13, 507–523 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Luo, L., Liao, Y.J., Jan, L.Y. & Jan, Y.N. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes. Dev. 8, 1787–1802 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Aberle, H. et al. wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33, 545–558 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Osterwalder, T., Yoon, K.S., White, B.H. & Keshishian, H. A conditional tissue-specific transgene expression system using inducible GAL4. Proc. Natl. Acad. Sci. USA 98, 12596–12601 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  32. Davis, G.W., Schuster, C.M. & Goodman, C.S. Genetic analysis of the mechanisms controlling target selection: target-derived Fasciclin II regulates the pattern of synapse formation. Neuron 19, 561–573 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Budnik, V. et al. Regulation of synapse structure and function by the Drosophila tumor suppressor gene dlg. Neuron 17, 627–640 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Halfon, M.S. et al. New fluorescent protein reporters for use with the Drosophila Gal4 expression system and for vital detection of balancer chromosomes. Genesis 34, 135–138 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Schwille, P., Kummer, S., Heikal, A.A., Moerner, W.E. & Webb, W.W. Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins. Proc. Natl. Acad. Sci. USA 97, 151–156 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E. & Webb, W.W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rabut, G. & Ellenberg, J. Photobleaching techniques to study mobility and molecular dynamics of proteins in live cells: FRAP, iFRAP, and FLIP. In Live Cell Imaging—A Laboratory Manual (eds. Goldman, R.D. & Spector, D.) 101–127 (Cold Spring Harbor Press, Cold Spring Harbor, New York, 2005).

    Google Scholar 

Download references

Acknowledgements

We thank Yvonne Eisele and Wernher Fouquet for comments on the manuscript. We thank Andreas Schönle and David Sandstrom for technical advice. We thank Hubert Willmann for the mechanical drawings, and Frank Kötting for constructing the imaging chamber and the anesthetization device. We thank Michael Knopp, as well as all other laboratory and mechanics workshop members, for help and discussion. This work was supported by grants from the University of Tübingen (fortüne 1691-0-0 and fortüne 1626-0-0) and from the Landesstiftung Baden-Württemberg to T.M.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias M Rasse.

Supplementary information

Supplementary Figure 1

Mechanical drawing of the modified petri dish, containing a hole in the base plate (PDF 82 kb)

Supplementary Figure 2

Mechanical drawing of the plastic spacer (PDF 77 kb)

Supplementary Figure 3

Mechanical drawing of the Plexiglas guide ring (PDF 111 kb)

Supplementary Figure 4

Mechanical drawing of the anodised metal ring (PDF 82 kb)

Supplementary Figure 5

Mechanical drawing of the main component of the Plexiglas lid (PDF 78 kb)

Supplementary Figure 6

Mechanical drawing of the hose connections to be attached to the Plexiglas lid (PDF 43 kb)

Supplementary Figure 7

Assembly of Plexiglas lid (PDF 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Füger, P., Behrends, L., Mertel, S. et al. Live imaging of synapse development and measuring protein dynamics using two-color fluorescence recovery after photo-bleaching at Drosophila synapses. Nat Protoc 2, 3285–3298 (2007). https://doi.org/10.1038/nprot.2007.472

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.472

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing