Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics

Abstract

MaxQuant is a quantitative proteomics software package designed for analyzing large mass spectrometric data sets. It is specifically aimed at high-resolution mass spectrometry (MS) data. Currently, Thermo LTQ-Orbitrap and LTQ-FT-ICR instruments are supported and Mascot is used as a search engine. This protocol explains step by step how to use MaxQuant on stable isotope labeling by amino acids in cell culture (SILAC) data obtained with double or triple labeling. Complex experimental designs, such as time series and drug-response data, are supported. A standard desktop computer is sufficient to fulfill the computational requirements. The workflow has been stress tested with more than 1,000 liquid chromatography/mass spectrometry runs in a single project. In a typical SILAC proteome experiment, hundreds of thousands of peptides and thousands of proteins are automatically and reliably quantified. Additional information for identified proteins, such as Gene Ontology, domain composition and pathway membership, is provided in the output tables ready for further bioinformatics analysis. The software is freely available at the MaxQuant home page.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the computational workflow.
Figure 2: The graphical user interface of the Quant module.
Figure 3: The graphical user interface of the Identify module.

Similar content being viewed by others

References

  1. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    Article  CAS  Google Scholar 

  2. Zubarev, R. & Mann, M. On the proper use of mass accuracy in proteomics. Mol. Cell. Proteomics 6 377–381 (2007).

    Article  CAS  Google Scholar 

  3. Mann, M., & Kelleher, N.L. Special feature: Precision proteomics: the case for high resolution and high mass accuracy. Proc. Natl Acad. Sci. USA 105 18132–18138 (2008).

    Article  CAS  Google Scholar 

  4. Makarov, A. et al.Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Anal. Chem. 78 2113–2120 (2006).

    Article  CAS  Google Scholar 

  5. Olsen, J.V. et al. Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol. Cell. Proteomics 4, 2010–2021 (2005).

    Article  CAS  Google Scholar 

  6. Cox, J., & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  Google Scholar 

  7. Ong, S.E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386 (2002).

    Article  CAS  Google Scholar 

  8. Mann, M. Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell Biol. 7 952–958 (2006).

    Article  CAS  Google Scholar 

  9. de Godoy, L.M. et al. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455, 1251–1254 (2008).

    Article  CAS  Google Scholar 

  10. Bonaldi, T. et al. Combined use of RNAi and quantitative proteomics to study gene function in Drosophila . Mol. Cell 31, 762–772 (2008).

    Article  CAS  Google Scholar 

  11. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).

    Article  CAS  Google Scholar 

  12. Graumann, J. et al. Stable isotope labeling by amino acids in cell culture (SILAC) and proteome quantitation of mouse embryonic stem cells to a depth of 5,111 proteins. Mol. Cell. Proteomics 7, 672–683 (2008).

    Article  CAS  Google Scholar 

  13. Zanivan, S. et al. Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J. Proteome Res. 7, 5314–5326 (2008).

    Article  CAS  Google Scholar 

  14. Cox, J. & Mann, M. Is proteomics the new genomics? Cell 130, 395–398 (2007).

    Article  CAS  Google Scholar 

  15. Schimmel, J. et al. The ubiquitin-proteasome system is a key component of the SUMO-2/3 cycle. Mol. Cell. Proteomics 7, 2107–2122 (2008).

    Article  CAS  Google Scholar 

  16. Pan, C., Kumar, C., Bohl, S., Klingmueller, U. & Mann, M. Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type- specific functions. Mol. Cell. Proteomics 8, 443–450 (2009).

    Article  CAS  Google Scholar 

  17. Hubner, NC., Ren, S., & Mann, M. Peptide separation with immobilized pI strips is an attractive alternative to in-gel protein digestion for proteome analysis. Proteomics 8, 4862–4872 (2008).

    Article  CAS  Google Scholar 

  18. Blagoev, B., Ong, S.E., Kratchmarova, I. & Mann, M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat. Biotechnol. 22, 1139–1145 (2004).

    Article  CAS  Google Scholar 

  19. Vermeulen, M., Hubner, N.C. & Mann, M. High confidence determination of specific protein-protein interactions using quantitative mass spectrometry. Curr. Opin. Biotechnol. 19, 331–337 (2008).

    Article  CAS  Google Scholar 

  20. Perkins, D.N., Pappin, D.J., Creasy, D.M. & Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).

    Article  CAS  Google Scholar 

  21. Kersey, P.J. et al. The International Protein Index: an integrated database for proteomics experiments. Proteomics 4, 1985–1988 (2004).

    Article  CAS  Google Scholar 

  22. UniProt Consortium. The universal protein resource (UniProt). Nucleic Acids Res. 36, D190–D195 (2008).

  23. Flicek, P. et al. Ensembl 2008. Nucleic Acids Res. 36, D707–D714 (2008).

    Article  CAS  Google Scholar 

  24. Elias, J.E. & Gygi, S.P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007).

    Article  CAS  Google Scholar 

  25. Pevzner, P.A., Mulyukov, Z., Dancik, V. & Tang, C.L. Efficiency of database search for identification of mutated and modified proteins via mass spectrometry. Genome Res. 11, 290–299 (2001).

    Article  CAS  Google Scholar 

  26. Cox, J., Hubner, N.C. & Mann, M. How much peptide sequence information is contained in ion trap tandem mass spectra? J. Am. Soc. Mass Spectrom. 19, 1813–1820 (2008).

    Article  CAS  Google Scholar 

  27. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  Google Scholar 

  28. Finn, R.D. et al. The Pfam protein families database. Nucleic Acids Res. 36, D281–D288 (2008).

    Article  CAS  Google Scholar 

  29. Kanehisa, M. et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36, D480–D484 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the other members of the Proteomics and Signal Transduction group for help with the development of MaxQuant. This work was supported by the Max-Planck Society and by the 6th Framework Program of the European Union (Interaction Proteome Grant LSHG-CT-2003-505520 and HEROIC Grant LSHG-CT-2005-018883).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jürgen Cox or Matthias Mann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cox, J., Matic, I., Hilger, M. et al. A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4, 698–705 (2009). https://doi.org/10.1038/nprot.2009.36

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.36

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing