Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting G protein-coupled receptor signalling by blocking G proteins

Abstract

G protein-coupled receptors (GPCRs) are the largest class of drug targets, largely owing to their druggability, diversity and physiological efficacy. Many drugs selectively target specific subtypes of GPCRs, but high specificity for individual GPCRs may not be desirable in complex multifactorial disease states in which multiple receptors may be involved. One approach is to target G protein subunits rather than the GPCRs directly. This approach has the potential to achieve broad efficacy by blocking pathways shared by multiple GPCRs. Additionally, because many GPCRs couple to multiple G protein signalling pathways, blocking specific G protein subunits can 'bias' GPCR signals by inhibiting only a subset of these signals. Molecules that target G protein α or βγ-subunits have been developed and show strong efficacy in multiple preclinical disease models and biased inhibition of G protein signalling. In this Review, we discuss the development and characterization of G protein α and βγ-subunit ligands and the preclinical evidence that this exciting new approach has potential for therapeutic efficacy in a number of indications, such as pain, thrombosis, asthma and heart failure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagrammatic representation of how G protein inhibition can bias GPCR signalling.
Figure 2: Structures of inhibitors of G protein signalling.
Figure 3: Schematic of Gα subunit inhibition by YM-254890 and FR900359.
Figure 4: Mechanisms for selectively inhibiting signalling downstream of Gβγ.
Figure 5: Possible targets of Gβγ inhibitors in heart failure.

Similar content being viewed by others

References

  1. Gilman, A. G. G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 56, 615–649 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Oldham, W. M. & Hamm, H. E. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 9, 60–71 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Komolov, K. E. & Benovic, J. L. G protein-coupled receptor kinases: past, present and future. Cell. Signal. 41, 17–24 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Homan, K. T. & Tesmer, J. J. G. Structural insights into G protein-coupled receptor kinase function. Curr. Opin. Cell Biol. 27, 25–31 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Peterson, Y. K. & Luttrell, L. M. The diverse roles of arrestin scaffolds in G protein–coupled receptor signaling. Pharmacol. Rev. 69, 256 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alvarez-Curto, E. et al. Targeted elimination of G proteins and arrestins defines their specific contributions to both intensity and duration of G protein-coupled receptor signalling. J. Biol. Chem. 291, 27147–27159 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eichel, K., Jullie, D. & von Zastrow, M. β-Arrestin drives MAP kinase signalling from clathrin-coated structures after GPCR dissociation. Nat. Cell Biol. 18, 303–310 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grundmann, M. et al. Lack of β-arrestin signaling in the absence of active G proteins. Nat. Commun. 9, 341 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. O'Hayre, M. et al. Genetic evidence that β-arrestins are dispensable for the initiation of β2 adrenergic receptor signaling to ERK. Sci. Signal. 10, eaal3395 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Irannejad, R. et al. Conformational biosensors reveal GPCR signalling from endosomes. Nature 495, 534–538 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Ferrandon, S. et al. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat. Chem. Biol. 5, 734–742 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Fishman, M. C. & Porter, J. A. Pharmaceuticals: a new grammar for drug discovery. Nature 437, 491–493 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Van Raamsdonk, C. D. et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457, 599–602 (2009). This paper identifies constitutively activating mutations of G α q at high prevalence in uveal melanoma and identifies G α q as a potential therapeutic target for the treatment of uveal melanoma.

    Article  CAS  PubMed  Google Scholar 

  15. Van Raamsdonk, C. D. et al. Mutations in GNA11 in uveal melanoma. N. Engl. J. Med. 363, 2191–2199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kenakin, T. Signaling bias in drug discovery. Expert Opin. Drug Discov. 12, 321–333 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Smith, J. S., Lefkowitz, R. J. & Rajagopal, S. Biased signalling: from simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 17, 243–260 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bohn, L. M. et al. Enhanced morphine analgesia in mice lacking β-arrestin 2. Science 286, 2495–2498 (1999). These authors demonstrate that genetic deletion of β-arrestin 2 enhances the analgesic potency of morphine. This and subsequent work provide the basis for the idea of development of G protein-biased opioid analgesics.

    Article  CAS  PubMed  Google Scholar 

  19. Bohn, L. M., Gainetdinov, R. R., Lin, F. T., Lefkowitz, R. J. & Caron, M. G. μ-Opioid receptor desensitization by β arrestin 2 determines morphine tolerance but not dependence. Nature 408, 720–723 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Schmid, C. L. et al. Bias factor and therapeutic window correlate to predict safer opioid analgesics. Cell 171, 1165–1175 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koblish, M. et al. TRV0109101, a G protein-biased agonist of the μ-opioid receptor, does not promote opioid-induced mechanical allodynia following chronic administration. J. Pharmacol. Exp. Ther. 362, 254–262 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Singla, N. et al. A randomized, phase IIb study investigating oliceridine (TRV130), a novel μ receptor G protein pathway selective (μ-GPS) modulator, for the management of moderate to severe acute pain following abdominoplasty. J. Pain Res. 10, 2413–2424 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Simon, M. I., Strathmann, M. P. & Gautam, N. Diversity of G proteins in signal transduction. Science 252, 802–808 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Robishaw, J. D. & Berlot, C. H. Translating G protein subunit diversity into functional specificity. Curr. Opin. Cell Biol. 16, 206–209 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Oldham, W. M. & Hamm, E. Structural basis of function in heterotrimeric G proteins. Q. Rev. Biophys. 39, 117–166 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Khan, S. M. et al. The expanding roles of Gβγ subunits in G protein-coupled receptor signaling and drug action. Pharmacol. Rev. 65, 545–577 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Hepler, J. R. & Gilman, A. G. G proteins. Trends Biochem. Sci. 17, 383–387 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Northup, J. K. et al. Purification of the regulatory component of adenylate cyclase. Proc. Natl Acad. Sci. USA 77, 6516–6520 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Smrcka, A. V., Hepler, J. R., Brown, K. O. & Sternweis, P. C. Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. Science 251, 804–807 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Hart, M. J. et al. Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Gα13. Science 280, 2112–2114 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Taussig, R., Iniguez-Lluhi, J. A. & Gilman, A. G. Inhibition of adenylyl cyclase by Giα. Science 261, 218–221 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Logothetis, D. E., Kurachi, Y., Galper, J., Neer, E. J. & Clapham, D. E. The βγ subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325, 321–326 (1987).

    Article  CAS  PubMed  Google Scholar 

  33. Camps, M. et al. Isozyme-selective stimulation of phospholipase Cβ2 by G protein βγ subunits. Nature 360, 684–686 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Stephens, L. et al. A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein βγ subunits. Cell 77, 83–93 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Smrcka, A. V. G protein βγ subunits: central mediators of G protein-coupled receptor signaling. Cell. Mol. Life Sci. 65, 2191–2214 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sunahara, R. K., Dessauer, C. W. & Gilman, A. G. Complexity and diversity of mammalian adenylyl cyclases. Ann. Rev. Pharmacol. Toxicol. 36, 461–480 (1996).

    Article  CAS  Google Scholar 

  37. Hohenegger, M. et al. Gsα-selective G protein antagonists. Proc. Natl Acad. Sci. USA 95, 346–351 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sternweis, P. C. & Robishaw, J. D. Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain. J. Biol. Chem. 259, 13806–13813 (1984).

    CAS  PubMed  Google Scholar 

  39. Bokoch, G. M., Katada, T., Northup, J. K., Ui, M. & Gilman, A. G. Purification and properties of the inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. J. Biol. Chem. 259, 3560–3567 (1984).

    CAS  PubMed  Google Scholar 

  40. Katada, T., Bokoch, G. M., Northup, J. K., Ui, M. & Gilman, A. G. The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Properties and function of the purified protein. J. Biol. Chem. 259, 3568–3577 (1984).

    CAS  PubMed  Google Scholar 

  41. Codina, J. et al. Pertussis toxin substrate, the putative N i component of adenylyl cyclases, in an αβ heterodimer regulated by guanine nucleotide and magnesium. Proc. Natl Acad. Sci. USA 80, 4276–4280 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Strathmann, M., Wilkie, T. M. & Simon, M. I. Diversity of the G protein family: sequences from five additional α subunits in the mouse. Proc. Natl Acad. Sci. USA 86, 7407–7409 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Linder, M. E., Ewald, D. A., Miller, R. J. & Gilman, A. G. Purification and characterization of G oα and three types of G iα after expression in Escherichia coli. J. Biol. Chem. 265, 8243–8251 (1990).

    CAS  PubMed  Google Scholar 

  44. Solis, G. P. et al. Golgi-resident Gαo promotes protrusive membrane dynamics. Cell 170, 939–955 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Casey, P. J., Fong, H. K. W., Simon, M. I. & Gilman, A. G. Gz, a guanine nucleotide-binding protein with unique biochemical properties. J. Biol. Chem. 265, 2383–2390 (1990).

    CAS  PubMed  Google Scholar 

  46. Murayama, T. & Ui, M. Loss of the inhibitory function of the guanine nucleotide regulatory component of adenylate cyclase due to its ADP ribosylation by islet-activating protein, pertussis toxin, in adipocyte membranes. J. Biol. Chem. 258, 3319–3326 (1983).

    CAS  PubMed  Google Scholar 

  47. Lee, C. H., Park, D., Wu, D., Rhee, S. G. & Simon, M. I. Members of the Gαq subunit gene family activate phospholipase Cβ isozymes. J. Biol. Chem. 267, 16044–16047 (1992).

    CAS  PubMed  Google Scholar 

  48. Taylor, S. J., Chae, H. Z., Rhee, S. G. & Exton, J. H. Activation of the β1 isozyme of phospholipase C by α subunits of the G q class of G proteins. Nature 350, 516–518 (1991).

    Article  CAS  PubMed  Google Scholar 

  49. Rhee, S. G. Regulation of phospho-specific phospholipase C. Annu. Rev. Biochem 70, 281–312 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Singer, W. D., Brown, H. A. & Sternweis, P. C. Regulation of eukaryotic phosphatidylinositol-specific phospholipase C and phospholipase D. Ann. Rev. Biochem. 66, 475–509 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Kadamur, G. & Ross, E. M. Mammalian phospholipase C. Annu. Rev. Physiol. 75, 127–154 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Harden, T. K., Waldo, G. L., Hicks, S. N. & Sondek, J. Mechanism of activation and inactivation of Gq/phospholipase C β signaling nodes. Chem. Rev. 111, 6120–6129 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wettschureck, N. & Offermanns, S. Mammalian G proteins and their cell type specific functions. Physiol. Rev. 85, 1159–1204 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Chagin, A. S. et al. G Protein stimulatory subunit alpha and Gq/11α G proteins are both required to maintain quiescent stem-like chondrocytes. Nat. Commun. 5, 3673 (2014).

    Article  PubMed  Google Scholar 

  55. Wang, S. et al. P2Y(2) and Gq/G(1)(1) control blood pressure by mediating endothelial mechanotransduction. J. Clin. Invest. 125, 3077–3086 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sivaraj, K. K. et al. Endothelial Gαq/11 is required for VEGF-induced vascular permeability and angiogenesis. Cardiovasc. Res. 108, 171–180 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. John, A. E. et al. Loss of epithelial Gq and G11 signaling inhibits TGFbeta production but promotes IL 33 mediated macrophage polarization and emphysema. Sci. Signal. 9, ra104 (2016).

    Article  PubMed  CAS  Google Scholar 

  58. Wilkie, T. M., Scherly, P. A., Strathmann, M. P., Slepak, V. Z. & Simon, M. I. Characterization of G protein α subunits in the G q class: expression in murine tissues and in stromal and hematopoietic cell lines. Proc. Natl Acad. Sci. USA 88, 10049–10053 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hepler, J. R. et al. Purification from Sf9 cells and characterization of recombinant Gq α and G11 α. Activation of purified phospholipase C isozymes by G α subunits. J. Biol. Chem. 268, 14367–14375 (1993).

    CAS  PubMed  Google Scholar 

  60. Kozasa, T. et al. Purification and characterization of recombinant G16 α from Sf9 cells: activation of purified phospholipase C isozymes by G protein α subunits. Proc. Natl Acad. Sci. USA 90, 9176–9180 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wirotanseng, L. N., Kuner, R. & Tappe-Theodor, A. Gq rather than G11 preferentially mediates nociceptor sensitization. Mol. Pain 9, 54 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Aittaleb, M., Boguth, C. A. & Tesmer, J. J. G. Structure and function of heterotrimeric G protein-regulated Rho guanine nucleotide exchange factors. Mol. Pharmacol. 77, 111–125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Momotani, K. et al. p63RhoGEF couples Gα(q/11)-mediated signaling to Ca2+ sensitization of vascular smooth muscle contractility. Circ. Res. 109, 993–1002 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Momotani, K. & Somlyo, A. V. p63RhoGEF: a new switch for G(q)-mediated activation of smooth muscle. Trends Cardiovasc. Med. 22, 122–127 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vaque, J. P. et al. A genome-wide RNAi screen reveals a Trio-regulated Rho GTPase circuitry transducing mitogenic signals initiated by G protein-coupled receptors. Mol. Cell 49, 94–108 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Sanchez-Fernandez, G. et al. Gαq signalling: the new and the old. Cell. Signal. 26, 833–848 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Garcia-Hoz, C. et al. G α(q) acts as an adaptor protein in protein kinase C ζ (PKCζ)-mediated ERK5 activation by G protein-coupled receptors (GPCR). J. Biol. Chem. 285, 13480–13489 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Garcia-Hoz, C. et al. Protein kinase C (PKC)ζ mediated Gαq stimulation of ERK5 protein pathway in cardiomyocytes and cardiac fibroblasts. J. Biol. Chem. 287, 7792–7802 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schrage, R. et al. The experimental power of FR900359 to study Gq regulated biological processes. Nat. Commun. 6, 10156 (2015). This comprehensive analysis reviews the specificity and efficacy of FR900359 as an inhibitor of Gα q in vitro and in cell models.

  70. Takasaki, J. et al. A novel Gαq/11-selective inhibitor. J. Biol. Chem. 279, 47438–47445 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Strathmann, M. P. & Simon, M. I. Gα12 and Gα13 subunits define a fourth class of G protein α subunits. Proc. Natl Acad. Sci. USA 88, 5582–5586 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kozasa, T. et al. p115 RhoGEF, a GTPase activating protein for Gα12 and Gα13. Science 280, 2109–2111 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Davis, T. L., Bonacci, T. M., Sprang, S. R. & Smrcka, A. V. Structural and molecular characterization of a preferred protein interaction surface on G protein βγ subunits. Biochemistry 44, 10593–10604 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Ford, C. E. et al. Molecular basis for interactions of G protein βγ subunits with effectors. Science 280, 1271–1274 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Lin, Y. & Smrcka, A. V. Understanding molecular recognition by G protein βγ subunits on the path to pharmacological targeting. Mol. Pharmacol. 80, 551–557 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Scott, J. K. et al. Evidence that a protein-protein interaction 'hot spot' on heterotrimeric G protein βγ subunits is used for recognition of a subclass of effectors. EMBO J. 20, 767–776 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cabrera, J. L., de Freitas, F., Satpaev, D. K. & Slepak, V. Z. Identification of the Gβ5-RGS7 protein complex in the retina. Biochem. Biophys. Res. Commun. 249, 898–902 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Witherow, D. S. et al. Complexes of the G protein subunit gβ5 with the regulators of G protein signaling RGS7 and RGS9. Characterization in native tissues and in transfected cells. J. Biol. Chem. 275, 24872–24880 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Snow, B. E. et al. A G protein γ subunit-like domain shared between RGS11 and other RGS proteins specifies binding to Gβ5 subunits. Proc. Natl Acad. Sci. USA 95, 13307–13312 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ueda, N. et al. G protein βγ subunits. Simplified purification and properties of novel isoforms. J. Biol. Chem. 269, 4388–4395 (1994).

    CAS  PubMed  Google Scholar 

  81. Wickman, K. D. et al. Recombinant G-protein βγ subunits activate the muscarinic-gated atrial potassium channel. Nature 368, 255–257 (1994).

    Article  CAS  PubMed  Google Scholar 

  82. Diverse-Pierluissi, M. et al. Selective coupling of G protein βγ complexes to inhibition of Ca2+ channels. J. Biol. Chem. 275, 28380–28385 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Mayeenuddin, L. H., McIntire, W. E. & Garrison, J. C. Differential sensitivity of P-Rex1 to isoforms of G protein βγ dimers. J. Biol. Chem. 281, 1913–1920 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Gibson, S. K. & Gilman, A. G. Giα and Gβ subunits both define selectivity of G protein activation by α2-adrenergic receptors. Proc. Natl Acad. Sci. USA 103, 212–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Lindorfer, M. A. et al. Differential activity of the G protein β5 γ2 subunit at receptors and effectors. J. Biol. Chem. 273, 34429–34436 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Liang, Y. L. et al. Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 546, 118–123 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liang, Y. L. et al. Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor-Gs complex. Nature 555, 121–125 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Zhang, Y. et al. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546, 248–253 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kleuss, C., Scher¸bl, H., Hescheler, J., Schultz, G. & Wittig, B. Selectivity in signal transduction determined by γ subunits of heterotrimeric G proteins. Science 259, 832–834 (1993).

    Article  CAS  PubMed  Google Scholar 

  90. Wang, Q., Mullah, B., Hansen, C., Asundi, J. & Robishaw, J. D. Ribozyme-mediated suppression of the G Protein γ 7 subunit suggests a role in hormone regulation of adenylylcyclase activity. J. Biol. Chem. 272, 26040–26048 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Schwindinger, W. F. et al. Loss of G protein γ7 alters behavior and reduces striatal α(olf) level and cAMP production. J. Biol. Chem. 278, 6575–6579 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Schwindinger, W. F. et al. Mice with deficiency of G protein γ3 are lean and have seizures. Mol. Cell. Biol. 24, 7758–7768 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schwindinger, W. F. et al. Synergistic roles for G-protein γ3 and γ7 subtypes in seizure susceptibility as revealed in double knock-out mice. J. Biol. Chem. 287, 7121–7133 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Cho, J. H., Saini, D. K., Karunarathne, W. K., Kalyanaraman, V. & Gautam, N. Alteration of Golgi structure in senescent cells and its regulation by a G protein γ subunit. Cell. Signal. 23, 785–793 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. O'Neill, P. R., Karunarathne, W. K. A., Kalyanaraman, V., Silvius, J. R. & Gautam, N. G-Protein signaling leverages subunit-dependent membrane affinity to differentially control βγ translocation to intracellular membranes. Proc. Natl Acad. Sci. USA 109, E3568–E3577 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ajith Karunarathne, W. K., O'Neill, P. R., Martinez-Espinosa, P. L., Kalyanaraman, V. & Gautam, N. All G protein βγ complexes are capable of translocation on receptor activation. Biochem. Biophys. Res. Commun. 421, 605–611 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Lambright, D. G. et al. The 2.0 Å crystal structure of a heterotrimeric G protein. Nature 379, 311–319 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Sondek, J., Bohm, A., Lambright, D. G., Hamm, H. E. & Sigler, P. B. Crystal structure of a G-protein βγ dimer at 2.1Å resolution. Nature 379, 369–374 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Clapham, D. E. & Neer, E. J. G protein βγ subunits. Annu. Rev. Pharmacol. Toxicol. 37, 167–203 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Pitcher, J. A. et al. Role of βγ subunits of G proteins in targeting the β-adrenergic receptor kinase to membrane-bound receptors. Science 257, 1264–1267 (1992).

    Article  CAS  PubMed  Google Scholar 

  101. Koch, W. J., Hawes, B. E., Inglese, J., Luttrell, L. M. & Lefkowitz, R. J. Cellular expression of the carboxyl terminus of a G protein-coupled receptor kinase attenuates G βγ-mediated signaling. J. Biol. Chem. 269, 6193–6197 (1994).

    CAS  PubMed  Google Scholar 

  102. Koch, W. J. et al. Cardiac function in mice overexpressing the β-adrenergic receptor kinase or a βARK inhibitor. Science 268, 1350–1353 (1995). This study shows that cardiac expression of a protein that binds to Gβγ improves cardiac function, which is evidence that targeting Gβγ could be useful in the treatment of heart failure.

    Article  CAS  PubMed  Google Scholar 

  103. Rockman, H. A. et al. Expression of a β-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc. Natl Acad. Sci. USA 95, 7000–7005 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Eckhart, A. D., Ozaki, T., Tevaearai, H., Rockman, H. A. & Koch, W. J. Vascular-targeted overexpression of G protein-coupled receptor kinase-2 in transgenic mice attenuates β-adrenergic receptor signaling and increases resting blood pressure. Mol. Pharmacol. 61, 749–758 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Bonacci, T. M. et al. Differential targeting of Gβγ-subunit signaling with small molecules. Science 312, 443–446 (2006). This study identifies prototypical small-molecule inhibitors of Gβγ subunit signalling. In this work, the concept of selective blockage of Gβγ downstream signalling by small molecules is introduced.

    Article  CAS  PubMed  Google Scholar 

  106. Taniguchi, M. et al. YM-254890, a novel platelet aggregation inhibitor produced by Chromobacterium sp. QS3666. J. Antibiot. (Tokyo) 56, 358–363 (2003).

    Article  CAS  Google Scholar 

  107. Kawasaki, T. et al. Antithrombotic and thrombolytic efficacy of YM-254890, a G q/11 inhibitor, in a rat model of arterial thrombosis. Thromb. Haemost. 90, 406–413 (2003). This study demonstrates the utility of small-molecule Gα q inhibition in the treatment of thrombosis.

    Article  CAS  PubMed  Google Scholar 

  108. Kawasaki, T. et al. Pharmacological properties of YM-254890, a specific Gαq/11 inhibitor, on thrombosis and neointima formation in mice. Thromb. Haemost. 94, 184–192 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Nishimura, A. et al. Structural basis for the specific inhibition of heterotrimeric Gq protein by a small molecule. Proc. Natl Acad. Sci. USA 107, 13666–13671 (2010). These investigators solve the X-ray crystal co-structure of YM-254890 bound to Gα q , which provides a mechanism of action and a potential starting point for the development of Gα subunit-selective inhibitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wall, M. A. et al. The structure of the G protein heterotrimer Giα1β1γ2 . Cell 83, 1047–1058 (1995).

    Article  CAS  PubMed  Google Scholar 

  111. Lambright, D. G., Noel, J. P., Hamm, H. E. & Sigler, P. B. Structural determinants for activation of the α-subunit of a heterotrimeric G protein. Nature 369, 621–628 (1994).

    Article  CAS  PubMed  Google Scholar 

  112. Rasmussen, S. G. F. et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dror, R. O. et al. Structural basis for nucleotide exchange in heterotrimeric G proteins. Science 348, 1361–1365 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Charpentier, T. H. et al. Potent and selective peptide-based inhibition of the G protein Gαq. J. Biol. Chem. 291, 25608–25616 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Coughlin, S. R. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J. Thromb. Haemost. 3, 1800–1814 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Leon, C. et al. Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y(1) receptor-null mice. J. Clin. Invest. 104, 1731–1737 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gachet, C. P2Y(12) receptors in platelets and other hematopoietic and non-hematopoietic cells. Purinerg. Signal 8, 609–619 (2012).

    Article  CAS  Google Scholar 

  118. Carr, R. 3rd et al. Interdicting Gq activation in airway disease by receptor-dependent and receptor-independent mechanisms. Mol. Pharmacol. 89, 94–104 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Matthey, M. et al. Targeted inhibition of Gq signaling induces airway relaxation in mouse models of asthma. Sci. Transl Med. 9, eaag2288 (2017). This thorough study demonstrates the utility of FR900359 in the treatment of asthma. The authors use an aerosol-based approach to selectively deliver the compound to the lungs, thereby avoiding the global effects of Gα q inhibition.

    Article  PubMed  CAS  Google Scholar 

  120. Gao, Z. G. & Jacobson, K. A. On the selectivity of the Gαq inhibitor UBO-QIC: A comparison with the Gαi inhibitor pertussis toxin. Biochem. Pharmacol. 107, 59–66 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ohta, H., Okajima, F. & Ui, M. Inhibition by islet-activating protein of a chemotactic peptide-induced early breakdown of inositol phospholipids and Ca2+ mobilization in guinea pig neutrophils. J. Biol. Chem. 260, 15771–15780 (1985).

    CAS  PubMed  Google Scholar 

  122. Baldassare, J. J., Henderson, P. A. & Fisher, G. J. Plasma membrane associated phospholipase C from human platelets: synergistic stimulation of phosphatidylinositol 4,5-bisphosphate hydrolysis by thrombin and guanosine 5′-O-(3-thiotriphosphate). Biochemistry 28, 56–60 (1989).

    Article  CAS  PubMed  Google Scholar 

  123. Portilla, D., Morrissey, J. & Morrison, A. R. Bradykinin-activated membrane-associated phospholipase C in Madin-Darby canine kidney cells. J. Clin. Invest. 81, 1896–1902 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Smrcka, A. V. & Sternweis, P. C. Regulation of purified subtypes of phosphatidylinositol specific phospholipase Cβ by G protein α and βγ subunits. J. Biol. Chem. 268, 9667–9674 (1993).

    CAS  PubMed  Google Scholar 

  125. Boyer, J. L., Waldo, G. L. & Harden, T. K. βγ-Subunit activation of G-protein-regulated phospholipase C. J. Biol. Chem. 267, 25451–25456 (1992).

    CAS  PubMed  Google Scholar 

  126. Philip, F., Kadamur, G., Silos, R. G. l., Woodson, J. & Ross, E. M. Synergistic activation of phospholipase C-β3 by Gαq and Gβγ describes a simple two-state coincidence detector. Curr. Biol. 20, 1327–1335 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Rebres, R. A. et al. Synergistic Ca2+ responses by Gβγ and Gαq-coupled G-protein-coupled receptors require a single PLCβ isoform that is sensitive to both Gβγ and Gαq. J. Biol. Chem. 286, 942–951 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Stehno-Bittel, L., Krapivinsky, G., Krapivinsky, L., Perez-Terzic, C. & Clapham, D. E. The G protein βγ subunit transduces the muscarinic receptor signal for Ca2+ release in Xenopus oocytes. J. Biol. Chem. 270, 30068–30074 (1995).

    Article  CAS  PubMed  Google Scholar 

  129. Maruko, T. et al. Involvement of the βγ subunits of G proteins in the cAMP response induced by stimulation of the histamine H1 receptor. Naunyn Schmiedebergs Arch. Pharmacol. 372, 153–159 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Rensing, D. T., Uppal, S., Blumer, K. J. & Moeller, K. D. Toward the selective inhibition of G proteins: total synthesis of a simplified YM-254890 analog. Org. Lett. 17, 2270–2273 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Xiong, X. F. et al. Total synthesis and structure-activity relationship studies of a series of selective G protein inhibitors. Nat. Chem. 8, 1035–1041 (2016). This paper synthesizes a series of compounds related to FR900359 demonstrating total synthesis of these natural products and a possible route to designing new selective inhibitors of Gα subunits.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhang, H. et al. Structure-activity relationship studies of the cyclic depsipeptide natural product YM-254890, targeting the Gq protein. ChemMedChem 12, 830–834 (2017).

    Article  PubMed  CAS  Google Scholar 

  133. Iaccarino, G., Smithwick, L. A., Lefkowitz, R. J. & Koch, W. J. Targeting Gβγ signaling in arterial vascular smooth muscle proliferation: a novel strategy to limit restenosis. Proc. Natl Acad. Sci. USA 96, 3945–3950 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Iaccarino, G. & Koch, W. J. Transgenic mice targeting the heart unveil G protein-coupled receptor kinases as therapeutic targets. Assay. Drug Dev. Technol. 1, 347–355 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Rengo, G., Lymperopoulos, A., Leosco, D. & Koch, W. J. GRK2 as a novel gene therapy target in heart failure. J. Mol. Cell Cardiol. 50, 785–792 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Bookout, A. L. et al. Targeting Gβγ signaling to inhibit prostate tumor formation and growth. J. Biol. Chem. 278, 37569–37573 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Lymperopoulos, A., Rengo, G., Funakoshi, H., Eckhart, A. D. & Koch, W. J. Adrenal GRK2 upregulation mediates sympathetic overdrive in heart failure. Nat. Med. 13, 315 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Siuda, E. R., Carr, R. 3rd, Rominger, D. H. & Violin, J. D. Biased μ-opioid receptor ligands: a promising new generation of pain therapeutics. Curr. Opin. Pharmacol. 32, 77–84 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Gulati, S. et al. Targeting G protein-coupled receptor signaling at the G protein level with a selective nanobody inhibitor. Nat. Commun. 9, 1996 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Lehmann, D. M., Seneviratne, A. M. P. B. & Smrcka, A. V. Small molecule disruption of G protein βγ subunit signaling inhibits neutrophil chemotaxis and inflammation. Mol. Pharmacol. 73, 410–418 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Neer, E. J., Schmidt, C. J., Nambudripad, R. & Smith, T. F. The ancient regulatory-protein family of WD-repeat proteins. Nature 371, 297–300 (1994).

    Article  CAS  PubMed  Google Scholar 

  142. Arkin, M. R. & Wells, J. A. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat. Rev. Drug Discov. 3, 301–317 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Bolshan, Y. et al. Synthesis, optimization, and evaluation of novel small molecules as antagonists of WDR5-MLL interaction. ACS Med. Chem. Lett. 4, 353–357 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Grebien, F. et al. Pharmacological targeting of the Wdr5-MLL interaction in C/EBPα N-terminal leukemia. Nat. Chem. Biol. 11, 571–578 (2015). This paper describes the development and the structural basis for binding of a therapeutically relevant compound that binds to a WD40 repeat protein to block protein–protein interactions, which suggests that development of novel Gβγ inhibitors that bind with high affinity is possible.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Schapira, M., Tyers, M., Torrent, M. & Arrowsmith, C. H. WD40 repeat domain proteins: a novel target class? Nat. Rev. Drug Discov. 16, 773–786 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Seneviratne, A. M., Burroughs, M., Giralt, E. & Smrcka, A. V. Direct-reversible binding of small molecules to G protein βγ subunits. Biochim. Biophys. Acta 1814, 1210–1218 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tonge, P. J. Drug–target kinetics in drug discovery. ACS Chem. Neurosci. 9, 29–39 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Bignante, E. A. et al. APP/Go protein Gβγ-complex signaling mediates Aβ degeneration and cognitive impairment in Alzheimer's disease models. Neurobiol. Aging 64, 44–57 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Sanz, G. et al. Gallein, a Gβγ subunit signalling inhibitor, inhibits metastatic spread of tumour cells expressing OR51E2 and exposed to its odorant ligand. BMC Res. Notes 10, 541 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Jensen, D. D. et al. Protein kinase D and Gβγ subunits mediate agonist-evoked translocation of protease-activated receptor-2 from the golgi apparatus to the plasma membrane. J. Biol. Chem. 291, 11285–11299 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Gautam, J. et al. 4-Hydroxynonenal-induced GPR109A (HCA2 receptor) activation elicits bipolar responses, Gαi -mediated anti-inflammatory effects and Gβγ -mediated cell death. Br. J. Pharmacol. 175, 2581–2598 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kajimoto, T. et al. Involvement of Gβγ subunits of Gi protein coupled with S1P receptor on multivesicular endosomes in F-actin formation and cargo sorting into exosomes. J. Biol. Chem. 293, 245–253 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Wells, C. A. et al. Gβγ inhibits exocytosis via interaction with critical residues on soluble N-ethylmaleimide-sensitive factor attachment protein-25. Mol. Pharmacol. 82, 1136–1149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Stephens, L. R. et al. The Gβγ sensitivity of a PI3K is dependent upon a tightly associated adaptor, 101. Cell 89, 105–114 (1997).

    Article  CAS  PubMed  Google Scholar 

  155. Tesmer, V. M., Kawano, T., Shankaranarayanan, A., Kozasa, T. & Tesmer, J. J. G. Snapshot of activated G proteins at the membrane: the Gαq-GRK2-Gβγ complex. Science 310, 1686–1690 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Whorton, M. R. & MacKinnon, R. X-Ray structure of the mammalian GIRK2-βγ G-protein complex. Nature 498, 190–197 (2013). These authors solve the X-ray structure of the Gβγ subunit bound to one of its effector molecules, GIRK. This structure reveals why small molecules that bind to the top of Gβγ do not inhibit GIRK channel regulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Gaudet, R., Bohm, A. & Sigler, P. B. Crystal structure at 2.4 angstroms resolution of the complex of transducin βγ and its regulator, phosducin. Cell 87, 577–588 (1996).

    Article  CAS  PubMed  Google Scholar 

  158. Mathews, J. L., Smrcka, A. V. & Bidlack, J. M. A. Novel Gβγ subunit inhibitor selectively modulates μ-opioid-dependent antinociception and attenuates acute morphine-induced antinociceptive tolerance and dependence. J. Neurosci. 28, 12183–12189 (2008). This study shows that small-molecule inhibition of Gβγ potentiates opioid analgesia and prevents the development of acute tolerance and dependence, which suggests this as a strategy for improving the safety of opioid analgesics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bourinet, E., Soong, T. W., Stea, A. & Snutch, T. P. Determinants of the G protein-dependent opioid modulation of neuronal calcium channels. Proc. Natl Acad. Sci. USA 93, 1486–1491 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ikeda, S. R. Voltage-dependent modulation of N-type calcium channels by G-protein βγ subunits. Nature 380, 255–258 (1996).

    Article  CAS  PubMed  Google Scholar 

  161. Kamal, F. A. et al. Simultaneous adrenal and cardiac GPCR-Gβγ inhibition halts heart failure progression. J. Am. Coll. Cardiol. 63, 2549–2557 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Yoon, E. J., Gerachshenko, T., Spiegelberg, B. D., Alford, S. & Hamm, H. E. Gβγ interferes with Ca2+-dependent binding of synaptotagmin to the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. Mol. Pharmacol. 72, 1210–1219 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Araldi, D., Ferrari, L. F. & Levine, J. D. Repeated μ-opioid exposure induces a novel form of the hyperalgesic priming model for transition to chronic pain. J. Neurosci. 35, 12502–12517 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bianchi, E., Norcini, M., Smrcka, A. & Ghelardini, C. Supraspinal Gβγ-dependent stimulation of PLCβ originating from G inhibitory protein-μ opioid receptor-coupling is necessary for morphine induced acute hyperalgesia. J. Neurochem. 111, 171–180 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Joseph, E. K., Bogen, O., Alessandri-Haber, N. & Levine, J. D. PLC-β3 signals upstream of PKC ε in acute and chronic inflammatory hyperalgesia. Pain 132, 67–73 (2007).

    Article  CAS  PubMed  Google Scholar 

  166. Xie, W. et al. Genetic alteration of phospholipase Cβ3 expression modulates behavioral and cellular responses to μ opioids. Proc. Natl Acad. Sci. USA 96, 10385–10390 (1999). This study demonstrates that deletion of PLCβ3 in mice potentiates morphine-dependent opioid analgesia, which suggests a mechanism by which Gβγ inhibitors potentiate opioid analgesia through blockade of Gβγ-dependent regulation of PLCβ3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Park, D., Jhon, D. Y., Lee, C. W., Lee, K. H. & Goo Rhee, S. Activation of phospholipase C isozymes by G protein βγ subunits. J. Biol. Chem. 268, 4573–4576 (1993).

    CAS  PubMed  Google Scholar 

  168. Hoot, M. R. et al. Inhibition of Gβγ-subunit signaling potentiates morphine-induced antinociception but not respiratory depression, constipation, locomotion, and reward. Behav. Pharmacol. 24, 144–152 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Xu, J. et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114, 201–214 (2003).

    Article  CAS  PubMed  Google Scholar 

  170. Surve, C. R., To, J. Y., Malik, S., Kim, M. & Smrcka, A. V. Dynamic regulation of neutrophil polarity and migration by the heterotrimeric G protein subunits Gαi-GTP and Gβγ. Sci. Signal. 9, ra22 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Rangel-Moreno, J. et al. Inhibition of G protein βγ subunit signaling abrogates nephritis in lupus-prone mice. Arthritis Rheumatol. 68, 2244–2256 (2016). This study shows that chronic Gβγ inhibition with gallein prevents the development of lupus, which shows the utility of this approach in chronic inflammatory disease and that chronic administration of gallein is well tolerated in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Casey, L. M. et al. Small molecule disruption of G βγ signaling inhibits the progression of heart failure. Circ. Res. 107, 532–539 (2010). These authors demonstrate that small-molecule Gβγ inhibition prevents the development of heart failure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kamal, F. A. et al. G protein-coupled receptor-G-protein βγ-subunit signaling mediates renal dysfunction and fibrosis in heart failure. J. Am. Soc. Nephrol. 28, 197–208 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Lorenz, K., Schmitt, J. P., Schmitteckert, E. M. & Lohse, M. J. A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy. Nat. Med. 15, 75–83 (2009).

    Article  CAS  PubMed  Google Scholar 

  175. Zhang, L. et al. Phospholipase Cε hydrolyzes perinuclear phosphatidylinositol 4-phosphate to regulate cardiac hypertrophy. Cell 153, 216–227 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Malik, S. et al. G protein βγ subunits regulate cardiomyocyte hypertrophy through a perinuclear Golgi phosphatidylinositol 4-phosphate hydrolysis pathway. Mol. Biol. Cell 26, 1188–1198 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Travers, J. G. et al. Pharmacological and activated fibroblast targeting of Gβγ-GRK2 after myocardial ischemia attenuates heart failure progression. J. Am. Coll. Cardiol. 70, 958–971 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wells, J. A. & McClendon, C. L. Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature 450, 1001 (2007).

    Article  CAS  PubMed  Google Scholar 

  179. Garcia-Olivares, J. et al. Gβγ subunit activation promotes dopamine efflux through the dopamine transporter. Mol. Psychiatry 22, 1673–1679 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Yost, E. A., Hynes, T. R., Hartle, C. M., Ott, B. J. & Berlot, C. H. Inhibition of G-protein βγ signaling enhances T cell receptor-stimulated interleukin 2 transcription in CD4+ T helper cells. PLOS One 10, e0116575 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Ouellaa-Benslama, R. et al. Identification of a GαGβγ, AKT and PKCα signalome associated with invasive growth in two genetic models of human breast cancer cell epithelial-to-mesenchymal transition. Int. J. Oncol. 41, 189–200 (2012).

    Google Scholar 

  182. Meens, M. J. et al. G-Protein βγ subunits in vasorelaxing and anti-endothelinergic effects of calcitonin gene-related peptide. Br. J. Pharmacol. 166, 297–308 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Irannejad, R. & Wedegaertner, P. B. Regulation of constitutive cargo transport from the trans-Golgi network to plasma membrane by Golgi-localized G protein betagamma subunits. J. Biol. Chem. 285, 32393–32404 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kirui, J. K. et al. Gβγ signaling promotes breast cancer cell migration and invasion. J. Pharmacol. Exp. Ther. 333, 393–403 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Tang, X. et al. A critical role of Gbetagamma in tumorigenesis and metastasis of breast cancer. J. Biol. Chem. 286, 13244–13254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Paudyal, P., Xie, Q., Vaddi, P. K., Henry, M. D. & Chen, S. Inhibiting G protein βγ signaling blocks prostate cancer progression and enhances the efficacy of paclitaxel. Oncotarget 8, 36067–36081 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Purcell, R. H., Toro, C., Gahl, W. A. & Hall, R. A. Hum. Mutat. 38, 1751–1760 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Arensdorf, A. M. et al. Sonic Hedgehog activates phospholipase A2 to enhance smoothened ciliary translocation. Cell Rep. 19, 2074–2087 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Gont, A., Daneshmand, M., Woulfe, J., Lavictoire, S. J. & Lorimer, I. A. PREX1 integrates G protein-coupled receptor and phosphoinositide 3-kinase signaling to promote glioblastoma invasion. Oncotarget 8, 8559–8573 (2017).

    Article  PubMed  Google Scholar 

  190. Onken, M. D. et al. Targeting nucleotide exchange to inhibit constitutively active G protein α subunits in cancer cells. Sci. Signal. 11, eaao6852 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

A.V.S. is funded by grants from the NIH (NIHR01GM81772 and R35GM127303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan V. Smrcka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Periaqueductal grey

An anatomical region in the brainstem that surrounds the cerebral aqueduct. This region is enriched in opioid receptors that are thought to mediate the central analgesic actions of opioid analgesics.

Hyperalgesia

Increased sensitivity to pain. Repeated opioid treatment for chronic pain can paradoxically increase sensitivity to pain stimuli over time.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campbell, A., Smrcka, A. Targeting G protein-coupled receptor signalling by blocking G proteins. Nat Rev Drug Discov 17, 789–803 (2018). https://doi.org/10.1038/nrd.2018.135

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2018.135

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research