Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular processing of platinum anticancer drugs

Key Points

  • Cisplatin is a platinum-based drug that has been in widespread use for many years to treat several forms of cancer, including testicular, ovarian, cervical, head and neck, and non-small-cell lung cancer.

  • Treatment is limited, however, by side effects including nephrotoxicity, emetogenesis and neurotoxicity. In addition, both inherent and acquired resistance to the drug limits its applications.

  • A large body of knowledge on the cellular processing of cisplatin has now emerged. This information has afforded a much more detailed understanding of how cisplatin-induced DNA damage is recognized, how the damage signals are transduced, how the cell-cycle arrests, and how DNA repair and apoptosis are activated.

  • This knowledge provides us with a basis for developing improved therapeutic strategies exploiting platinum-based drugs and/or the rational design of new platinum-based compounds. Disruptions of certain pathways by inhibitors, activators or combinations of drugs that modulate cellular sensitivity to cisplatin are likely to lead to clinical benefit.

Abstract

Cisplatin, carboplatin and oxaliplatin are platinum-based drugs that are widely used in cancer chemotherapy. Platinum–DNA adducts, which are formed following uptake of the drug into the nucleus of cells, activate several cellular processes that mediate the cytotoxicity of these platinum drugs. This review focuses on recently discovered cellular pathways that are activated in response to cisplatin, including those involved in regulating drug uptake, the signalling of DNA damage, cell-cycle checkpoints and arrest, DNA repair and cell death. Such knowledge of the cellular processing of cisplatin adducts with DNA provides valuable clues for the rational design of more efficient platinum-based drugs as well as the development of new therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Platinum-based anticancer drugs.
Figure 2: Mechanisms of cisplatin uptake and efflux.
Figure 3: Formation and effects of cisplatin adducts.
Figure 4: Recognition of platinum–DNA adducts: the roles of HMGB1.
Figure 5: Transduction of DNA-damage signals: p53 and cisplatin.
Figure 6: Transduction of DNA-damage signals: MAPK pathways and cisplatin.
Figure 7: Cisplatin and cell-death pathways.

Similar content being viewed by others

References

  1. Bosl, G. J., Bajorin, D. F. & Sheinfeld, J. Cancer of the Testis (eds DeVita, V. T. J., Hellman, S. & Rosenberg, S. A.) (Lippincott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  2. Jamieson, E. R. & Lippard, S. J. Structure, recognition, and processing of cisplatin–DNA adducts. Chem. Rev. 99, 2467–2498 (1999). This comprehensive review details structural studies of cisplatin–DNA adducts and describes cellular proteins that recognize cisplatin–DNA adducts.

    Article  CAS  PubMed  Google Scholar 

  3. Wong, E. & Giandomenico, C. M. Current status of platinum-based antitumor drugs. Chem. Rev. 99, 2451–2466 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Decatris, M. P., Sundar, S. & O'Byrne, K. J. Platinum-based chemotherapy in metastatic breast cancer: current status. Cancer Treat. Rev. 30, 53–81 (2004). This recent review describes cisplatin-/carboplatin-based regimens combined with many other cytotoxic drugs in the treatment of metastatic breast cancer.

    Article  CAS  PubMed  Google Scholar 

  5. Kelland, L. R. et al. Discovery and development of platinum complexes designed to circumvent cisplatin resistance. J. Inorg. Biochem. 77, 111–115 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Fuertes, M. A., Alonso, C. & Pérez, J. -M. Biochemical modulation of cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem. Rev. 103, 645–662 (2003). This review article details the molecular bases of cisplatin resistance and biochemical modulation strategies directed to circumvent cisplatin resistance.

    Article  CAS  PubMed  Google Scholar 

  7. Chaney, S. G., Campbell, S. L., Bassett, E. & Wu, Y. Recognition and processing of cisplatin- and oxaliplatin–DNA adducts. Crit. Rev. Oncol. Hematol. 53, 3–11 (2005).

    Article  PubMed  Google Scholar 

  8. Rixe, O. et al. Oxaliplatin, tetraplatin, cisplatin, and carboplatin: spectrum of activity in drug-resistant cell lines and in the cell lines of the National Cancer Institute's Anticancer Drug Screen panel. Biochem. Pharmacol. 52, 1855–1865 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Ho, Y. P., Au-Yeung, S. C. & To, K. K. Platinum-based anticancer agents: innovative design strategies and biological perspectives. Med. Res. Rev. 23, 633–655 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Barnes, K. R. & Lippard, S. J. in Metal Ions in Biological Systems. (ed. Sigel, H.) 143–177 (Marcel Dekker, New York, 2004).

    Google Scholar 

  11. Natile, G. & Coluccia, M. in Metal Ions in Biological Systems. (ed. Sigel, H.) 209–249 (Marcel Dekker, New York, 2004).

    Google Scholar 

  12. Perez, J. M., Fuertes, M. A., Alonso, C. & Navarro-Ranninger, C. Current status of the development of trans-platinum antitumor drugs. Crit. Rev. Oncol. Hematol. 35, 109–120 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Barnes, K. R., Kutikov, A. & Lippard, S. J. Synthesis, characterization, and cytotoxicity of a series of estrogen-tethered platinum(IV) complexes. Chem. Biol. 11, 557–564 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Hromas, R. A., North, J. A. & Burns, C. P. Decreased cisplatin uptake by resistant L1210 leukemia cells. Cancer Lett. 36, 197–201 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Mann, S. C., Andrews, P. A. & Howell, S. B. Modulation of cis-diamminedichloroplatinum(II) accumulation and sensitivity by forskolin and 3-isobutyl-1-methylxanthine in sensitive and resistant human ovarian carcinoma cells. Int. J. Cancer 48, 866–872 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Binks, S. P. & Dobrota, M. Kinetics and mechanism of uptake of platinum-based pharmaceuticals by the rat small intestine. Biochem. Pharmacol. 40, 1329–1336 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Ishida, S., Lee, J., Thiele, D. J. & Herskowitz, I. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc. Natl Acad. Sci. USA 99, 14298–14302 (2002). This pioneering paper identifies an unexpected pathway for uptake of cisplatin and establishes Ctr1 as a major component in ushering cisplatin into mammalian cells. It points to a potentially critical protein for sensitizing cells to the drug.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Holzer, A. K. et al. The copper influx transporter human copper transport protein 1 regulates the uptake of cisplatin in human ovarian carcinoma cells. Mol. Pharmacol. 66, 817–823 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Komatsu, M. et al. Copper-transporting P-type adenosine triphosphatase (ATP7B) is associated with cisplatin resistance. Cancer Res. 60, 1312–1316 (2000).

    CAS  PubMed  Google Scholar 

  20. Miyashita, H. et al. Expression of copper-transporting P-type adenosine triphosphatase (ATP7B) as a chemoresistance marker in human oral squamous cell carcinoma treated with cisplatin. Oral Oncol. 39, 157–162 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Nakayama, K. et al. Prognostic value of the Cu-transporting ATPase in ovarian carcinoma patients receiving cisplatin-based chemotherapy. Clin. Cancer Res. 10, 2804–2811 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Nakayama, K. et al. Copper-transporting P-type adenosine triphosphatase (ATP7B) as a cisplatin based chemoresistance marker in ovarian carcinoma: comparative analysis with expression of MDR1, MRP1, MRP2, LRP and BCRP. Int. J. Cancer 101, 488–495 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Ohbu, M. et al. Copper-transporting P-type adenosine triphosphatase (ATP7B) is expressed in human gastric carcinoma. Cancer Lett. 189, 33–38 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Cui, Y. et al. Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol. Pharmacol. 55, 929–937 (1999).

    CAS  PubMed  Google Scholar 

  25. Kool, M. et al. Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Res. 57, 3537–3547 (1997).

    CAS  PubMed  Google Scholar 

  26. Koike, K. et al. A canalicular multispecific organic anion transporter (cMOAT) antisense cDNA enhances drug sensitivity in human hepatic cancer cells. Cancer Res. 57, 5475–5479 (1997).

    CAS  PubMed  Google Scholar 

  27. Ohashi, K. et al. Copper(II) protects yeast against the toxicity of cisplatin independently of the induction of metallothionein and the inhibition of platinum uptake. Biochem. Biophys. Res. Comm. 310, 148–152 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Katano, K. et al. Acquisition of resistance to cisplatin is accompanied by changes in the cellular pharmacology of copper. Cancer Res. 62, 6559–6565 (2002).

    CAS  PubMed  Google Scholar 

  29. Safaei, R. et al. Cross-resistance to cisplatin in cells with acquired resistance to copper. Cancer Chemother. Pharmacol. 53, 239–246 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Harrap, K. R. Preclinical studies identifying carboplatin as a viable cisplatin alternative. Cancer Treat. Rev. 12 (Suppl. A), 21–33 (1985).

    Article  CAS  PubMed  Google Scholar 

  31. Tashiro, T., Kawada, Y., Sakurai, Y. & Kidani, Y. Antitumor activity of a new platinum complex, oxalato (trans-l-1,2-diaminocyclohexane)platinum (II): new experimental data. Biomed. Pharmacother. 43, 251–260 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Chaney, S. G. et al. Protein interactions with platinum–DNA adducts: from structure to function. J. Inorg. Biochem. 98, 1551–1559 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Raymond, E., Faivre, S., Chaney, S., Woynarowski, J. & Cvitkovic, E. Cellular and molecular pharmacology of oxaliplatin. Mol. Cancer Ther. 1, 227–235 (2002).

    CAS  PubMed  Google Scholar 

  34. Jung, Y. & Lippard, S. J. Multiple states of stalled T7 RNA polymerase at DNA lesions generated by platinum anticancer agents. J. Biol. Chem. 278, 52084–52092 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Vaisman, A. et al. Effect of DNA polymerases and high mobility group protein 1 on the carrier ligand specificity for translesion synthesis past platinum–DNA adducts. Biochemistry 38, 11026–11039 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Zdraveski, Z. Z., Mello, J. A., Farinelli, C. K., Essigmann, J. M. & Marinus, M. G. MutS preferentially recognizes cisplatin- over oxaliplatin-modified DNA. J. Biol. Chem. 277, 1255–1260 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Kartalou, M. & Essigmann, J. M. Recognition of cisplatin adducts by cellular proteins. Mutat. Res. 478, 1–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Wozniak, K. & Blasiak, J. Recognition and repair of DNA–cisplatin adducts. Acta Biochim. Pol. 49, 583–596 (2002).

    CAS  PubMed  Google Scholar 

  39. Swanson, P. C. Fine structure and activity of discrete RAG-HMG complexes on V(D)J recombination signals. Mol. Cell. Biol. 22, 1340–1351 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aidinis, V. et al. The RAG1 homeodomain recruits HMG1 and HMG2 to facilitate recombination signal sequence binding and to enhance the intrinsic DNA-bending activity of RAG1-RAG2. Mol. Cell. Biol. 19, 6532–6542 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. van Gent, D. C., Hiom, K., Paull, T. T. & Gellert, M. Stimulation of V(D)J cleavage by high mobility group proteins. EMBO J. 16, 2665–2670 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yuan, F., Gu, L., Guo, S., Wang, C. & Li, G. -M. Evidence for involvement of HMGB1 protein in human DNA mismatch repair. J. Biol. Chem. 279, 20935–20940 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Jayaraman, L. et al. High mobility group protein-1 (HMG-1) is a unique activator of p53. Genes Dev. 12, 462–472 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Imamura, T. et al. Interaction with p53 enhances binding of cisplatin-modified DNA by high mobility group 1 protein. J. Biol. Chem. 276, 7534–7540 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Huang, J. -C., Zamble, D. B., Reardon, J. T., Lippard, S. J. & Sancar, A. HMG-domain proteins specifically inhibit the repair of the major DNA adduct of the anticancer drug cisplatin by human excision nuclease. Proc. Natl Acad. Sci. USA 91, 10394–10398 (1994). This paper demonstrates that HMG-domain proteins HMG1 and human mitochondrial transcription factor specifically inhibit repair of the cisplatin 1,2-intrastrand cross-link by the human excision nuclease. The results suggest that the types and levels of HMG-domain proteins in a given tumour might influence its responsiveness to cisplatin and provide a rational basis for the synthesis of new platinum anticancer drug candidates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zamble, D. B., Mu, D., Reardon, J. T., Sancar, A. & Lippard, S. J. Repair of cisplatin–DNA adducts by the mammalian excision nuclease. Biochemistry 35, 10004–10013 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Zamble, D. B., Mikata, Y., Eng, C. H., Sandman, K. E. & Lippard, S. J. Testis-specific HMG-domain protein alters the responses of cells to cisplatin. J. Inorg. Biochem. 91, 451–462 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. He, Q., Liang, C. H. & Lippard, S. J. Steroid hormones induce HMG1 overexpression and sensitize breast cancer cells to cisplatin and carboplatin. Proc. Natl Acad. Sci. USA 97, 5768–5772 (2000). This paper describes that treatment of human cancer cells having steroid hormone receptors with the appropriate hormone, oestrogen and/or progesterone, significantly increases the potency of cisplatin and its analogue carboplatin by causing the overexpression of HMGB1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brown, S. J., Kellett, P. J. & Lippard, S. J. Ixr1, a yeast protein that binds to platinated DNA and confers sensitivity to cisplatin. Science 261, 603–605 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. McA'Nulty, M. M. & Lippard, S. J. The HMG-domain protein Ixr1 blocks excision repair of cisplatin–DNA adducts in yeast. Mutat. Res. 362, 75–86 (1996).

    Article  PubMed  Google Scholar 

  51. Nagatani, G. et al. Transcriptional activation of the human HMG1 gene in cisplatin-resistant human cancer cells. Cancer Res. 61, 1592–1597 (2001).

    CAS  PubMed  Google Scholar 

  52. Wei, M., Burenkova, O. & Lippard, S. J. Cisplatin sensitivity in Hmbg1−/− and Hmbg1+/+ mouse cells. J. Biol. Chem. 278, 1769–1773 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Kunz, C., Zurbriggen, K. & Fleck, O. Mutagenesis of the HMGB (high-mobility group B) protein Cmb1 (cytosine-mismatch binding 1) of Schizosaccharomyces pombe: effects on recognition of DNA mismatches and damage. Biochem. J. 372, 651–660 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pallier, C. et al. Association of chromatin proteins high mobility group box (HMGB) 1 and HMGB2 with mitotic chromosomes. Mol. Biol. Cell 14, 3414–3426 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bonaldi, T., Längst, G., Strohner, R., Becker, P. B. & Bianchi, M. E. The DNA chaperone HMGB1 facilitates ACF/CHRAC-dependent nucleosome sliding. EMBO J. 21, 6865–6873 (2002). This paper describes that transient interaction of HMGB1 with nucleosomal linker DNA overlapping ISWI-binding sites enhances the ability of ACF to bind nucleosomal DNA and accelerates the sliding activity of limiting concentrations of remodelling factor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Scaffidi, P., Misteli, T. & Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195 (2002). This paper reveals that Hmgb1−/− necrotic cells have a greatly reduced ability to promote inflammation, which proves that the release of HMGB1 can signal the demise of a cell to its neighbors. In apoptotic cells, HMGB1 is bound firmly to chromatin.

    Article  CAS  PubMed  Google Scholar 

  57. Degryse, B. & de Virgilio, M. The nuclear protein HMGB1, a new kind of chemokine? FEBS Lett. 553, 11–17 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Bianchi, M. E. & Manfredi, A. Chromatin and cell death. Biochim. Biophys. Acta 1677, 181–186 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Bustin, M. At the crossroads of necrosis and apoptosis: signaling to multiple cellular targets by HMGB1. Science's STKE [online], <http://www.stke.sciencemag.org/cgi/content/full/OC_sigtrans;2002/151/pe39> (2002).

  60. Bruhn, S. L., Pil, P. M., Essigmann, J. M., Housman, D. E. & Lippard, S. J. Isolation and characterization of human cDNA clones encoding a high mobility group box protein that recognizes structural distortions to DNA caused by binding of the anticancer agent cisplatin. Proc. Natl Acad. Sci. USA 89, 2307–2311 (1992). Human cDNA clones encoding a structure-specific recognition protein, SSRP1, that binds specifically to DNA modified with cisplatin are isolated and characterized in this paper.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Saunders, A. et al. Tracking FACT and the RNA polymerase II elongation complex through chromatin in vivo. Science 301, 1094–1096 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Orphanides, G., Wu, W. -H., Lane, W. S., Hampsey, M. & Reinberg, D. The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 400, 284–288 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Yarnell, A. T., Oh, S., Reinberg, D. & Lippard, S. J. Interaction of FACT, SSRP1, and the high mobility group (HMG) domain of SSRP1 with DNA damaged by the anticancer drug cisplatin. J. Biol. Chem. 276, 25736–25741 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Franke, T. F. et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81, 727–736 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Pommier, Y., Sordet, O., Antony, S., Hayward, R. L. & Kohn, K. W. Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene 23, 2934–2949 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Datta, S. R., Brunet, A. & Greenberg, M. E. Cellular survival: a play in three Akts. Genes Dev. 13, 2905–2927 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Fraser, M. et al. p53 Is a determinant of X-linked inhibitor of apoptosis protein/Akt-mediated chemoresistance in human ovarian cancer cells. Cancer Res. 63, 7081–7088 (2003).

    CAS  PubMed  Google Scholar 

  68. Dan, H. C. et al. Akt phosphorylation and stabilization of X-linked inhibitor of apoptosis protein (XIAP). J. Biol. Chem. 279, 5405–5412 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Asselin, E., Mills, G. B. & Tsang, B. K. XIAP regulates Akt activity and caspase-3-dependent cleavage during cisplatin-induced apoptosis in human ovarian epithelial cancer cells. Cancer Res. 61, 1862–1868 (2001).

    CAS  PubMed  Google Scholar 

  70. Barthwal, M. K. et al. Negative regulation of mixed lineage kinase 3 by protein kinase B/AKT leads to cell survival. J. Biol. Chem. 27, 3897–3902 (2003).

    Article  CAS  Google Scholar 

  71. Kim, A. H., Khursigara, G., Sun, X., Franke, T. F. & Chao, M. V. Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol. Cell. Biol. 21, 893–901 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Viniegra, J. G. et al. Modulation of PI3K/Akt pathway by E1a mediates sensitivity to cisplatin. Oncogene 21, 7131–7136 (2002).

    Article  CAS  Google Scholar 

  73. Mabuchi, S. et al. Inhibition of NF-κB Increases the efficacy of cisplatin in in vitro and in vivo ovarian cancer models. J. Biol. Chem. 279, 23477–23485 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Shaul, Y. c-Abl: activation and nuclear targets. Cell Death Differ. 7, 10–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Theis, S. & Roemer, K. c-Abl tyrosine kinase can mediate tumor cell apoptosis independently of the Rb and p53 tumor suppressors. Oncogene 17, 557–564 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Cong, F. & Goff, S. P. c-Abl-induced apoptosis, but not cell cycle arrest, requires mitogen-activated protein kinase kinase 6 activation. Proc. Natl Acad. Sci. USA 96, 13819–13824 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gong, J. et al. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 399, 806–809 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Machuy, N., Rajalingam, K. & Rudel, T. Requirement of caspase-mediated cleavage of c-Abl during stress-induced apoptosis. Cell Death Differ. 11, 290–300 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Wang, J. Y. J. Regulation of cell death by the Abl tyrosine kinase. Oncogene. 19, 5643–5650 (2000). This comprehensive review describes a role for the nuclear c-Abl tyrosine kinase in the regulation of cell cycle checkpoints and DNA repair and apoptosis.

    Article  CAS  PubMed  Google Scholar 

  80. Agami, R., Blandino, G., Oren, M. & Shaul, Y. Interaction of c-Abl and p73alpha and their collaboration to induce apoptosis. Nature 399, 809–813 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Yuan, Z. -M. et al. p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature 399, 814–817 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Sionov, R. V. et al. c-Abl neutralizes the inhibitory effect of Mdm2 on p53. J. Biol. Chem. 274, 8371–8374 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Kharbanda, S. et al. Activation of the c-Abl tyrosine kinase in the stress response to DNA-damaging agents. Nature 376, 785–788 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Kharbanda, S., Yuan, Z. -M., Weichselbaum, R. & Kufe, D. Determination of cell fate by c-Abl activation in the response to DNA damage. Oncogene 17, 3309–3318 (1998).

    Article  PubMed  Google Scholar 

  85. Sanchez-Prieto, R., Sanchez-Arevalo, V. J., Servitja, J. -M. & Gutkind, J. S. Regulation of p73 by c-Abl through the p38 MAP kinase pathway. Oncogene 21, 974–979 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Kharbanda, S. et al. Activation of MEK kinase 1 by the c-Abl protein tyrosine kinase in response to DNA damage. Mol. Cell. Biol. 20, 4979–4989 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pandey, P. et al. Activation of p38 mitogen-activated protein kinase by c-Abl-dependent and-independent mechanisms. J. Biol. Chem. 271, 23775–23779 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. David-Cordonnier, M. -H. et al. The DNA-binding domain of human c-Abl tyrosine kinase promotes the interaction of a HMG chromosomal protein with DNA. Nucleic Acids Res. 27, 2265–2270 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Miao, Y. -J. & Wang, J. Y. J. Binding of A/T-rich DNA by three high mobility group-like domains in c-Abl tyrosine kinase. J. Biol. Chem. 271, 22823–22830 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science 253, 49–53 (1991).

    Article  CAS  PubMed  Google Scholar 

  91. Oren, M. Decision making by p53: life, death and cancer. Cell Death Differ. 10, 431–442 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Geske, F. J. et al. DNA repair is activated in early stages of p53-induced apoptosis. Cell Death Differ. 7, 393–401 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Benchimol, S. p53-dependent pathways of apoptosis. Cell Death Differ. 8, 1049–1051 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. McKay, B. C., Ljungman, M. & Rainbow, A. J. Potential roles for p53 in nucleotide excision repair. Carcinogenesis 20, 1389–1396 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Seo, Y. R., Fishel, M. L., Amundson, S., Kelley, M. R. & Smith, M. L. Implication of p53 in base excision DNA repair: in vivo evidence. Oncogene 21, 731–737 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Adimoolam, S. & Ford, J. M. p53 and regulation of DNA damage recognition during nucleotide excision repair. DNA Repair 2, 947–954 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Adimoolam, S. & Ford, J. M. p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proc. Natl Acad. Sci. USA 99, 12985–12990 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang, D. & Lippard, S. J. Cisplatin-induced post-translational modification of histones H3 and H4. J. Biol. Chem. 279, 20622–20625 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Wang, X. W. et al. p53 modulation of TFIIH-associated nucleotide excision repair activity. Nature Genet. 10, 188–195 (1995).

    Article  CAS  PubMed  Google Scholar 

  100. Dutta, A., Ruppert, J. M., Aster, J. C. & Winchester, E. Inhibition of DNA replication factor RPA by p53. Nature 365, 79–82 (1993).

    Article  CAS  PubMed  Google Scholar 

  101. Vekris, A. et al. Molecular determinants of the cytotoxicity of platinum compounds: the contribution of in silico research. Cancer Res. 64, 356–362 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Kanamori, Y. et al. A newly developed adenovirus-mediated transfer of a wild-type p53 gene increases sensitivity to cis-diamminedichloroplatinum (II) in p53-deleted ovarian cancer cells. Eur. J. Cancer 34, 1802–1806 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Kigawa, J. et al. Effect of p53 gene transfer and cisplatin in a peritonitis carcinomatosa model with p53-deficient ovarian cancer cells. Gynecol. Oncol. 84, 210–215 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Perego, P. et al. Association between cisplatin resistance and mutation of p53 gene and reduced bax expression in ovarian carcinoma cell systems. Cancer Res. 56, 556–562 (1996).

    CAS  PubMed  Google Scholar 

  105. Pestell, K. E., Hobbs, S. M., Titley, J. C., Kelland, L. R. & Walton, M. I. Effect of p53 status on sensitivity to platinum complexes in a human ovarian cancer cell line. Mol. Pharmacol. 57, 503–511 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Fan, J. & Bertino, J. R. Modulation of cisplatinum cytotoxicity by p53: effect of p53-mediated apoptosis and DNA repair. Mol. Pharmacol. 56, 966–972 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Zamble, D. B., Jacks, T. & Lippard, S. J. p53-Dependent and-independent responses to cisplatin in mouse testicular teratocarcinoma cells. Proc. Natl Acad. Sci. USA 95, 6163–6168 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Katayama, H. et al. Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nature Genet. 36, 55–62 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Ohtsuka, T., Ryu, H., Minamishima, Y. A., Ryo, A. & Lee, S. W. Modulation of p53 and p73 levels by cyclin G: implication of a negative feedback regulation. Oncogene 22, 1678–1687 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Ohtsuka, T., Jensen, M. R., Kim, H. G., Kim, K. T. & Lee, S. W. The negative role of cyclin G in ATM-dependent p53 activation. Oncogene 23, 5405–5408 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Quinn, J. E. et al. BRCA1 functions as a differential modulator of chemotherapy-induced apoptosis. Cancer Res. 63, 6221–6228 (2003).

    CAS  PubMed  Google Scholar 

  112. Gatei, M. et al. Role for ATM in DNA damage-induced phosphorylation of BRCA1. Cancer Res. 60, 3299–3304 (2000).

    CAS  PubMed  Google Scholar 

  113. Husain, A., He, G., Venkatraman, E. S. & Spriggs, D. R. BRCA1 upregulation is associated with repair-mediated resistance to cis-diamminedichloroplatinum(II). Cancer Res. 58, 1120–1123 (1998).

    CAS  PubMed  Google Scholar 

  114. Hartman, A. R. & Ford, J. M. BRCA1 induces DNA damage recognition factors and enhances nucleotide excision repair. Nature Genet. 32, 180–184 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Olson, J. M. & Hallahan, A. R. p38 MAP kinase: a convergence point in cancer therapy. Trends. Mol. Med. 10, 125–129 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Wada, T. & Penninger, J. M. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23, 2838–2849 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Losa, J. H. et al. Role of the p38 MAPK pathway in cisplatin-based therapy. Oncogene 22, 3998–4006 (2003). This paper describes that p38 MAPK pathway is a specific target for cisplatin-based therapy.

    Article  CAS  Google Scholar 

  118. Kumar, S., Boehm, J. & Lee, J. C. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nature Rev. Drug Discovery 2, 717–726 (2003).

    Article  CAS  Google Scholar 

  119. Pillaire, M. -J., Nebreda, A. R. & Darbon, J. -M. Cisplatin and UV radiation induce activation of the stress-activated protein kinase p38γ in human melanoma cells. Biochem. Biophys. Res. Comm. 278, 724–728 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Mansouri, A. et al. Sustained activation of JNK/p38 MAPK pathways in response to cisplatin leads to Fas ligand induction and cell death in ovarian carcinoma cells. J. Biol. Chem. 278, 19245–19256 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Yang, S. -H., Sharrocks, A. D. & Whitmarsh, A. J. Transcriptional regulation by the MAP kinase signaling cascades. Gene 320, 3–21 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Soloaga, A. et al. MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. EMBO J. 22, 2788–2797 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Thomson, S. et al. The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO J. 18, 4779–4793 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang, X., Martindale, J. L. & Holbrook, N. J. Requirement for ERK activation in cisplatin-induced apoptosis. J. Biol. Chem. 275, 39435–39443 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Persons, D. L., Yazlovitskaya, E. M. & Pelling, J. C. Effect of extracellular signal-regulated kinase on p53 accumulation in response to cisplatin. J. Biol. Chem. 275, 35778–35785 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Cui, W., Yazlovitskaya, E. M., Mayo, M. S., Pellings, J. C. & Persons, E. L. Cisplatin-induced response of c-jun N-terminal kinase 1 and extracellular signal-regulated protein kinases 1 and 2 in a series of cisplatin-resistant ovarian carcinoma cell lines. Mol. Carcinogenesis 29, 219–228 (2000).

    Article  CAS  Google Scholar 

  127. Sánchez-Pérez, I., Murguía, J. R. & Perona, R. Cisplatin induces a persistent activation of JNK that is related to cell death. Oncogene 16, 533–540 (1998).

    Article  PubMed  Google Scholar 

  128. Persons, D. L., Yazlovitskaya, E. M., Cui, W. & Pelling, J. C. Cisplatin-induced activation of mitogen-activated protein kinases in ovarian carcinoma cells: inhibition of extracellular signal-regulated kinase activity increases sensitivity to cisplatin. Clin. Cancer Res. 5, 1007–1014 (1999).

    CAS  PubMed  Google Scholar 

  129. Hayakawa, J. et al. Inhibition of extracellular signal-regulated protein kinase or c-Jun N-terminal protein kinase cascade, differentially activated by cisplatin, sensitizes human ovarian cancer cell line. J. Biol. Chem. 274, 31648–31654 (1999).

    Article  CAS  PubMed  Google Scholar 

  130. Mandic, A., Viktorsson, K., Heiden, T., Hansson, J. & Shoshan, M. C. The MEK1 inhibitor PD98059 sensitizes C8161 melanoma cells to cisplatin-induced apoptosis. Melanoma Res. 11, 11–19 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Yeh, P. Y. et al. Increase of the resistance of human cervical carcinoma cells to cisplatin by inhibition of the MEK to ERK signaling pathway partly via enhancement of anticancer drug-induced NF-κB activation. Biochem. Pharmacol. 63, 1423–1430 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Carter, A. B. & Hunninghake, G. W. A constitutive active MEK->ERK pathway negatively regulates NF-κB-dependent gene expression by modulating TATA-binding protein phosphorylation. J. Biol. Chem. 275, 27858–27864 (2000).

    CAS  PubMed  Google Scholar 

  133. Gao, X. -S. et al. Sensitivity of anticancer drugs in NIH3T3' cells transfected with oncogenes accompanied by pSV2neo vector. Anticancer Res. 15, 1911–1914 (1995).

    CAS  PubMed  Google Scholar 

  134. Zanke, B. W. et al. The stress-activated protein kinase pathway mediates cell death following injury induced by cis-platinum, UV irradiation or heat. Curr. Biol. 6, 606–613 (1996).

    Article  CAS  PubMed  Google Scholar 

  135. Sánchez-Pérez, I. & Perona, R. Lack of c-Jun activity increases survival to cisplatin. FEBS Lett. 453, 151–158 (1999).

    Article  PubMed  Google Scholar 

  136. Davis, R. J. Signal transduction by the JNK group of MAP kinases. Cell 103, 239–252 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Levresse, V., Marek, L., Blumberg, D. & Heasley, L. E. Regulation of platinum-compound cytotoxicity by the c-Jun N-terminal kinase and c-Jun signaling pathway in small-cell lung cancer cells. Mol. Pharmacol. 62, 689–697 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Potapova, O. et al. The Jun kinase/stress-activated protein kinase pathway functions to regulate DNA repair and inhibition of the pathway sensitizes tumor cells to cisplatin. J. Biol. Chem. 272, 14041–14044 (1997).

    Article  CAS  PubMed  Google Scholar 

  139. Chen, Y. -R., Wang, X., Templeton, D., Davis, R. J. & Tan, T. -H. The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and gamma radiation. Duration of JNK activation may determine cell death and proliferation. J. Biol. Chem. 271, 31929–31936 (1996).

    Article  CAS  PubMed  Google Scholar 

  140. Sánchez-Pérez, I., Martínez-Gomariz, M., Williams, D., Keyse, S. M. & Perona, R. CL100/MKP-1 modulates JNK activation and apoptosis in response to cisplatin. Oncogene 19, 5142–5152 (2000).

    Article  PubMed  Google Scholar 

  141. Franklin, C. C., Srikanth, S. & Kraft, A. S. Conditional expression of mitogen-activated protein kinase phosphatase-1, MKP-1, is cytoprotective against UV-induced apoptosis. Proc. Natl Acad. Sci. USA 95, 3014–3019 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Dasika, G. K. et al. DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene 18, 7883–7899 (1999).

    Article  CAS  PubMed  Google Scholar 

  143. Attardi, L. D., de Vries, A. & Jacks, T. Activation of the p53-dependent G1 checkpoint response in mouse embryo fibroblasts depends on the specific DNA damage inducer. Oncogene 23, 973–980 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Sorenson, C. M. & Eastman, A. Influence of cis-diamminedichloroplatinum(II) on DNA synthesis and cell cycle progression in excision repair proficient and deficient Chinese hamster ovary cells. Cancer Res. 48, 6703–6707 (1988).

    CAS  PubMed  Google Scholar 

  145. Peng, C. -Y. et al. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277, 1501–1505 (1997).

    Article  CAS  PubMed  Google Scholar 

  146. Sanchez, Y. et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277, 1497–1501 (1997).

    Article  CAS  PubMed  Google Scholar 

  147. Furnari, B., Rhind, N. & Russell, P. Cdc25 mitotic inducer targeted by chk1 DNA damage checkpoint kinase. Science 277, 1495–1497 (1997).

    Article  CAS  PubMed  Google Scholar 

  148. Liu, Q. et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev. 14, 1448–1459 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Matsuoka, S., Huang, M. & Elledge, S. J. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282, 1893–1897 (1998).

    Article  CAS  PubMed  Google Scholar 

  150. Matsuoka, S. et al. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc. Natl Acad. Sci. USA 97, 10389–10394 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lopez-Girona, A., Furnari, B., Mondesert, O. & Russell, P. Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein. Nature 397, 172–175 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Costa, R. -M., Chigancas, V., Galhardo Rda, S. Carvalho, H. & Menck, C. F. The eukaryotic nucleotide excision repair pathway. Biochimie. 85, 1083–1099 (2003). A recent review about mechanisms of nucleotide excision repair (NER). This article describes the main protein players and the different sequential steps in the eukaryotic NER mechanism in human cells, from lesion recognition to damage removal and DNA synthesis.

    Article  CAS  PubMed  Google Scholar 

  153. Bohr, V. A., Smith, C. A., Okumoto, D. S. & Hanawalt, P. C. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40, 359–369 (1985). This paper reports transcription coupled repair — a subpathway of nucleotide excision repair.

    Article  CAS  PubMed  Google Scholar 

  154. Mellon, I., Spivak, G. & Hanawalt, P. C. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51, 241–249 (1987).

    Article  CAS  PubMed  Google Scholar 

  155. Sugasawa, K. et al. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol. Cell 2, 223–232 (1998).

    Article  CAS  PubMed  Google Scholar 

  156. Spivak, G. et al. Ultraviolet-sensitive syndrome cells are defective in transcription-coupled repair of cyclobutane pyrimidine dimers. DNA Repair 1, 629–643 (2002).

    Article  CAS  PubMed  Google Scholar 

  157. Hanawalt, P. C. Subpathways of nucleotide excision repair and their regulation. Oncogene 21, 8949–8956 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Wang, D., Hara, R., Singh, G., Sancar, A. & Lippard, S. J. Nucleotide excision repair from site-specifically platinum-modified nucleosomes. Biochemistry 42, 6747–6753 (2003). This paper reveals that mononucleosome and post-translational modifications of histones modulate the excision repair of platinum–DNA adducts.

    Article  CAS  PubMed  Google Scholar 

  159. Furuta, T. et al. Transcription-coupled nucleotide excision repair as a determinant of cisplatin sensitivity of human cells. Cancer Res. 62, 4899–4902 (2002).

    CAS  PubMed  Google Scholar 

  160. Wang, Z., Wu, X. & Friedberg, E. C. Nucleotide-excision repair of DNA in cell-free extracts of the yeast Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 90, 4907–4911 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Welsh, C. et al. Reduced levels of XPA, ERCC1 and XPF DNA repair proteins in testis tumor cell lines. Int. J. Cancer 110, 352–361 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Koberle, B., Masters, J. R., Hartley, J. A. & Wood, R. D. Defective repair of cisplatin-induced DNA damage caused by reduced XPA protein in testicular germ cell tumours. Curr. Biol. 9, 273–276 (1999).

    Article  CAS  PubMed  Google Scholar 

  163. Ford, J. M. & Hanawalt, P. C. Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in global DNA repair but exhibit normal transcription-coupled repair and enhanced UV resistance. Proc. Natl Acad. Sci. USA 92, 8876–8880 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hwang, B. J., Ford, J. M., Hanawalt, P. C. & Chu, G. Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc. Natl Acad. Sci. USA 96, 424–428 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Takimoto, R. et al. BRCA1 transcriptionally regulates damaged DNA binding protein (DDB2) in the DNA repair response following UV-irradiation. Cancer Biol. Ther. 1, 177–186 (2002).

    Article  CAS  PubMed  Google Scholar 

  166. Smith, M. L. et al. p53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes. Mol. Cell. Biol. 20, 3705–3714 (2000). This paper describes evidence suggesting a role for Gadd45 in DNA repair and in chromatin remodelling of templates concurrent with DNA repair, thus suggesting that Gadd45 might participate in the coupling between chromatin assembly and DNA repair.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Smith, M. L. et al. Antisense GADD45 expression results in decreased DNA repair and sensitizes cells to u. v.-irradiation or cisplatin. Oncogene 13, 2255–2263 (1996).

    CAS  PubMed  Google Scholar 

  168. Bellacosa, A. Functional interactions and signaling properties of mammalian DNA mismatch repair proteins. Cell Death Differ. 8, 1076–1092 (2001).

    Article  CAS  PubMed  Google Scholar 

  169. Nehmé, A. et al. Differential induction of c-Jun NH2-terminal kinase and c-Abl kinase in DNA mismatch repair-proficient and-deficient cells exposed to cisplatin. Cancer Res. 57, 3253–3257 (1997).

    PubMed  Google Scholar 

  170. Toft, N. J. et al. Msh2 status modulates both apoptosis and mutation frequency in the murine small intestine. Proc. Natl Acad. Sci. USA 96, 3911–3915 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lage, H. & Dietel, M. Involvement of the DNA mismatch repair system in antineoplastic drug resistance. J. Cancer Res. Clin. Oncol. 125, 156–165 (1999).

    Article  CAS  PubMed  Google Scholar 

  172. Strathdee, G., MacKean, M. J., Illand, M. & Brown, R. A role for methylation of the hMLH1 promoter in loss of hMLH1 expression and drug resistance in ovarian cancer. Oncogene 18, 2335–2341 (1999). This paper indicates that methylation of the hMLH1 promoter might be a common mechanism for loss of hMLH1 expression and possibly for cisplatin-resistance in ovarian cancer.

    Article  CAS  PubMed  Google Scholar 

  173. Drummond, J. T., Anthoney, A., Brown, R. & Modrich, P. Cisplatin and adriamycin resistance are associated with MutLalpha and mismatch repair deficiency in an ovarian tumor cell line. J. Biol. Chem. 271, 19645–19648 (1996).

    Article  CAS  PubMed  Google Scholar 

  174. Sansom, O. J., Toft, N. J., Winton, D. J. & Clarke, A. R. Msh-2 suppresses in vivo mutation in a gene dose and lesion dependent manner. Oncogene 20, 3580–3584 (2001).

    Article  CAS  PubMed  Google Scholar 

  175. de las Alas, M. M., Aebi, S., Fink, D., Howell, S. B. & Los, G. Loss of DNA mismatch repair: effects on the rate of mutation to drug resistance. J. Natl Cancer Inst. 89, 1537–1541 (1997).

    Article  CAS  PubMed  Google Scholar 

  176. Samimi, G. et al. Analysis of MLH1 and MSH2 expression in ovarian cancer before and after platinum drug-based chemotherapy. Clin. Cancer Res. 6, 1415–1421 (2000).

    CAS  PubMed  Google Scholar 

  177. Claij, N. & te Riele, H. Msh2 deficiency does not contribute to cisplatin resistance in mouse embryonic stem cells. Oncogene 23, 260–266 (2004).

    Article  CAS  PubMed  Google Scholar 

  178. Branch, P., Masson, M., Aquilina, G., Bignami, M. & Karran, P. Spontaneous development of drug resistance: mismatch repair and p53 defects in resistance to cisplatin in human tumor cells. Oncogene 19, 3138–3145 (2000).

    Article  CAS  PubMed  Google Scholar 

  179. Massey, A., Offman, J., Macpherson, P. & Karran, P. DNA mismatch repair and acquired cisplatin resistance in E. coli and human ovarian carcinoma cells. DNA Repair 2, 73–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  180. Gonzalez, V. M., Fuertes, M. A., Alonso, C. & Perez, J. M. Is cisplatin-induced cell death always produced by apoptosis? Mol. Pharmacol. 59, 657–663 (2001).

    Article  CAS  PubMed  Google Scholar 

  181. Lieberthal, W., Triaca, V. & Levine, J. Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Am. J. Physiol. 270, 700–708 (1996).

    Google Scholar 

  182. Nguewa, P. A., Fuertes, M. A., Alonso, C. & Peréz, J. M. Pharmacological modulation of Poly(ADP-ribose) polymerase-mediated cell death: exploitation in cancer chemotherapy. Mol. Pharmacol. 64, 1007–1014 (2003).

    Article  CAS  PubMed  Google Scholar 

  183. Herceg, Z. & Wang, Z. Q. Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat. Res. 477, 97–110 (2001). PARP and poly(ADP-ribosyl)ation are proposed to be important for the regulation of many cellular processes such as DNA repair, cell death, chromatin functions and genomic stability. This review summarizes the functions of PARP in these processes.

    Article  CAS  PubMed  Google Scholar 

  184. Fulda, S., Los, M., Friesen, C. & Debatin, K. -M. Chemosensitivity of solid tumor cells in vitro is related to activation of the CD95 system. Int. J. Cancer 76, 105–114 (1998).

    Article  CAS  PubMed  Google Scholar 

  185. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).

    Article  CAS  PubMed  Google Scholar 

  186. Kojima, H. et al. Abrogation of mitochondrial cytochrome C release and caspase-3 activation in acquired multidrug resistance. J. Biol. Chem. 273, 16647–16650 (1998).

    Article  CAS  PubMed  Google Scholar 

  187. Seki, K. et al. Cisplatin (CDDP) specifically induces apoptosis via sequential activation of caspase-8,-3 and-6 in osteosarcoma. Cancer Chemother. Pharmacol. 45, 199–206 (2000).

    Article  CAS  PubMed  Google Scholar 

  188. Srinivasula, S. M., Ahmad, M., Fernades-Alnemri, T. & Alnemri, E. S. Autoactivation of precaspase-9 by Apaf-1 mediated oligomerization. Mol. Cell 1, 949–957 (1998).

    Article  CAS  PubMed  Google Scholar 

  189. Blanc, C. et al. Caspase-3 Is Essential for procaspase-9 processing and cisplatin-induced apoptosis of MCF-7 breast cancer cells. Cancer Res. 60, 4386–4390 (2000).

    CAS  PubMed  Google Scholar 

  190. Henkels, K. M. & Turchi, J. J. Cisplatin-induced apoptosis proceeds by caspase-3-dependent and-independent pathways in cisplatin-resistant and-sensitive human ovarian cancer cell lines. Cancer Res. 59, 3077–3083 (1999).

    CAS  PubMed  Google Scholar 

  191. Cummings, B. S. & Schnellmann, R. G. Cisplatin-induced renal cell apoptosis: caspase 3-dependent and-independent pathways. J. Pharmacol. Exp. Ther. 302, 8–17 (2002).

    Article  CAS  PubMed  Google Scholar 

  192. Galea, A. M. & Murray, V. The interaction of cisplatin and analogues with DNA in reconstituted chromatin. Biochim. Biophys. Acta 1579, 142–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  193. Millard, J. T. & Wilkes, E. E. cis- and trans-diamminedichloroplatinum(II) interstrand crosslinking of a defined sequence nucleosomal core particle. Biochemistry 39, 16046–16055 (2000).

    Article  CAS  PubMed  Google Scholar 

  194. Foka, M. & Paoletti, J. Interaction of cis-diamminedichloroplatinum (II) to chromatin. Specificity of the drug distribution. Biochem. Pharmacol. 35, 3283–3291 (1986).

    Article  CAS  PubMed  Google Scholar 

  195. Lippard, S. J. & Hoeschele, J. D. Binding of cis- and trans-dichlorodiammineplatinum(II) to the nucleosome core. Proc. Natl Acad. Sci. USA 76, 6091–6095 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Ciccarelli, R. B., Solomon, M. J., Varshavsky, A. & Lippard, S. J. In vivo effects of cis- and trans-diamminedichloroplatinum(II) on SV40 chromosomes: differential repair, DNA–protein crosslinking, and inhibition of replication. Biochemistry 24, 7533–7540 (1985).

    Article  CAS  PubMed  Google Scholar 

  197. Hayes, J. J. & Scovell, W. M. cis-diamminedichloroplatinum (II) modified chromatin and nucleosomal core particle. Biochim. Biophys. Acta 1089, 377–385 (1991).

    Article  CAS  PubMed  Google Scholar 

  198. Hayes, J. J. & Scovell, W. M. cis-diamminedichloroplatinum (II) modified chromatin and nucleosomal core particle probed with DNase I. Biochim. Biophys. Acta 1088, 413–418 (1991).

    Article  CAS  PubMed  Google Scholar 

  199. Mymryk, J. S., Zaniewski, E. & Archer, T. K. Cisplatin inhibits chromatin remodeling, transcription factor binding, and transcription from the mouse mammary tumor virus promoter in vivo. Proc. Natl Acad. Sci. USA 92, 2076–2080 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Ziegler, C. J., Silverman, A. P. & Lippard, S. J. High throughput synthesis and screening of platinum drug candidates. J. Biol. Inorg. Chem. 5, 774–783 (2000).

    Article  CAS  PubMed  Google Scholar 

  201. Giandomenico, C. M. et al. Carboxylation of kinetically inert platinum(IV) hydroxy complexes. An entree into orally active platinum(IV) antitumor agents. Inorg. Chem. 34, 1015–1021 (1995).

    Article  CAS  PubMed  Google Scholar 

  202. Hall, M. D., Dolman, R. C. & Hambley, T. W. in Metal Ions in Biological Systems (ed. Sigel, H.) 297–322 (Marcel Dekker, New York, 2004).

    Google Scholar 

  203. Pasqualini, R. et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 60, 722–727 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Arap, W., Pasqualini, R. & Ruoslahti, E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279, 377–380 (1998).

    Article  CAS  PubMed  Google Scholar 

  205. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    Article  CAS  PubMed  Google Scholar 

  206. Jackson, A., Davis, J., Pither, R. J., Rodger, A. & Hannon, M. J. Estrogen-derived steroidal metal complexes: agents for cellular delivery of metal centers to estrogen receptor-positive cells. Inorg. Chem. 40, 3964–3973 (2001).

    Article  CAS  PubMed  Google Scholar 

  207. Bunn, P. A. Chemotherapy for advanced non-small-cell lung cancer: who, what, when, why? J. Clin. Oncol. 20, 23S–33S (2002).

    Article  CAS  PubMed  Google Scholar 

  208. Martin, M. Platinum compounds in the treatment of advanced breast cancer. Clin. Breast Cancer 2, 190–208 (2001).

    Article  CAS  PubMed  Google Scholar 

  209. Smith, I. E. & Talbot, D. C. Cisplatin and its analogues in the treatment of advanced breast cancer: a review. Br. J. Cancer 65, 787–793 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Cosaert, J. & Quoix, E. Platinum drugs in the treatment of non-small-cell lung cancer. Br. J. Cancer 87, 825–833 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Shelley, M. D., Burgon, K. & Mason, M. D. Treatment of testicular germ-cell cancer: a Cochrane evidence-based systematic review. Cancer Treat Rev 28, 237–253 (2002).

    Article  CAS  PubMed  Google Scholar 

  212. Lebwohl, D. & Canetta, R. Clinical development of platinum complexes in cancer therapy: an historical perspective and an update. Eur. J. Cancer 34, 1522–1534 (1998). This review covers the clinical development of platinum coordination complexes, with emphasis on those compounds still under active study.

    Article  CAS  PubMed  Google Scholar 

  213. de Mulder, P. H. The chemotherapy of head and neck cancer. Anticancer Drugs 10 (Suppl. 1), S33–S37 (1999).

    Article  CAS  PubMed  Google Scholar 

  214. Scanlon, K. J., Newman, E. M., Lu, Y. & Priest, D. G. Biochemical basis for cisplatin and 5-fluorouracil synergism in human ovarian carcinoma cells. Proc. Natl Acad. Sci. USA 83, 8923–8925 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Scanlon, K. J., Lu, Y., Kashani-Sabet, M., Ma, J. & Newman, E. Mechanisms for cisplatin-FUra synergism and cisplatin resistance in human ovarian carcinoma cells both in vitro and in vivo. Adv. Exp. Med. Biol. 244, 127–135 (1988).

    Article  CAS  PubMed  Google Scholar 

  216. Shirasaka, T., Shimamoto, Y., Ohshimo, H., Saito, H. & Fukushima, M. Metabolic basis of the synergistic antitumor activities of 5-fluorouracil and cisplatin in rodent tumor models in vivo. Cancer Chemother. Pharmacol. 32, 167–172 (1993).

    Article  CAS  PubMed  Google Scholar 

  217. Johnston, P. G. et al. The cellular interaction of 5-fluorouracil and cisplatin in a human colon carcinoma cell line. Eur. J. Cancer 32A, 2148–2154 (1996).

    Article  CAS  PubMed  Google Scholar 

  218. Kim, M. S. et al. Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res. 63, 7291–7300. (2003).

    CAS  PubMed  Google Scholar 

  219. Bubley, G. J. et al. Effect of DNA conformation on cisplatin adduct formation. Biochem. Pharmacol. 51, 717–721 (1996).

    Article  CAS  PubMed  Google Scholar 

  220. Eastman, A. Crosslinking of glutathione to DNA by cancer chemotherapeutic platinum coordination complexes. Chem. Biol. Interact. 61, 241–248 (1987).

    Article  CAS  PubMed  Google Scholar 

  221. Hamilton, T. C. et al. Augmentation of adriamycin, melphalan, and cisplatin cytotoxicity in drug-resistant and-sensitive human ovarian carcinoma cell lines by buthionine sulfoximine mediated glutathione depletion. Biochem. Pharmacol. 34, 2583–2586 (1985).

    Article  CAS  PubMed  Google Scholar 

  222. Lai, G. M., Ozols, R. F., Young, R. C. & Hamilton, T. C. Effect of glutathione on DNA repair in cisplatin-resistant human ovarian cancer cell lines. J. Natl Cancer Inst. 81, 535–539 (1989).

    Article  CAS  PubMed  Google Scholar 

  223. Richon, V. M., Schulte, N. & Eastman, A. Multiple mechanisms of resistance to cis-diamminedichloroplatinum(II) in murine leukemia L1210 cells. Cancer Res. 47, 2056–2061 (1987).

    CAS  PubMed  Google Scholar 

  224. Kasahara, K. et al. Metallothionein content correlates with the sensitivity of human small cell lung cancer cell lines to cisplatin. Cancer Res. 51, 3237–3242 (1991).

    CAS  PubMed  Google Scholar 

  225. Dabholkar, M., Vionnet, J., Bostick-Bruton, F., Yu, J. J. & Reed, E. Messenger RNA levels of XPAC and ERCC1 in ovarian cancer tissue correlate with response to platinum-based chemotherapy. J. Clin. Invest. 94, 703–708 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Lai, G. M., Ozols, R. F., Smyth, J. F., Young, R. C. & Hamilton, T. C. Enhanced DNA repair and resistance to cisplatin in human ovarian cancer. Biochem. Pharmacol. 37, 4597–4600 (1988).

    Article  CAS  PubMed  Google Scholar 

  227. Zeng-Rong, N. et al. Elevated DNA repair capacity is associated with intrinsic resistance of lung cancer to chemotherapy. Cancer Res. 55, 4760–4764 (1995).

    CAS  PubMed  Google Scholar 

  228. Mamenta, E. L. et al. Enhanced replicative bypass of platinum–DNA adducts in cisplatin-resistant human ovarian carcinoma cell lines. Cancer Res. 54, 3500–3505 (1994).

    CAS  PubMed  Google Scholar 

  229. Eliopoulos, A. G. et al. The control of apoptosis and drug resistance in ovarian cancer: influence of p53 and Bcl-2. Oncogene 11, 1217–1228 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Cancer Institute grant to S.J.L. We thank K. R. Barnes for a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Lippard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

ABCC2

APAF1

ATM

ATP7B

ATR

BRCA1

c-ABL

CASP3

CASP7

CASP8

CASP9

CDC25C

CHK1

CHK2

Cmb1

CSA

CSB

Ctr1

DDB2

ERCC1

FADD

GADD45

HMGB1

IXR1

MDM2

MEK1

MLH1

MSH2

MSK1

p38 MAPK

p53

p73

RAG1

RAG2

SPT16

SRC

SSRP1

TFIIH

XIAP

XPA

XPB

XPC

XPD

XPF

XPG

Glossary

V(D)J RECOMBINATION

Site-directed DNA recombination carried out by RAG1 and RAG2 to create an enormous diversity of immunoglobulins and T-cell receptors.

NUCLEOTIDE EXCISION REPAIR

A DNA-repair pathway that removes ultraviolet-light-induced DNA damage and chemical DNA adducts by excising the oligonucleotide that contains the damaged base(s). The single-stranded gap is filled in by using the intact strand as a template.

NUCLEOSOME

A packing unit for DNA within the cell nucleus, which gives the chromatin a 'beads-on-a-string' structure, in which the 'beads' consist of complexes of nuclear proteins (histones) and DNA, and the 'string' consists of DNA only. A histone octamer forms a core around which the double-stranded DNA helix is wound nearly twice.

UBIQUITYLATION

A type of protein modification involving the covalent addition of ubiquitin, a small protein, to lysine groups. Poly-ubiquitylation targets proteins for degradation.

CHECKPOINT

The cell cycle can be arrested before the G1–S or G2–M phase transitions at checkpoints where DNA damage is detected.

COCKAYNE SYNDROME

A rare inherited disorder in which people are sensitive to sunlight, have short stature, and have the appearance of premature aging. Two genes defective in Cockayne syndrome, CSA and CSB, have been identified so far, both of which code for proteins that interact with components of the transcriptional machinery and with DNA repair proteins.

MISMATCH REPAIR

A DNA-repair pathway that removes mismatched bases and corrects the insertion or deletion of short stretches of (repeated) DNA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Lippard, S. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4, 307–320 (2005). https://doi.org/10.1038/nrd1691

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1691

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing