Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Purinergic signalling and disorders of the central nervous system

Key Points

  • Adenosine-5′-triphosphate (ATP) is the transmitter responsible for non-adrenergic, non-cholinergic neuromuscular transmission; the purinergic signalling hypothesis was proposed in 1972.

  • Receptor subtypes for purines and pyrimidines were cloned and characterized, and four P1(adenosine), seven P2X ion channels and eight P2Y G protein-coupled receptors have been identified.

  • ATP and adenosine regulate the release of glutamate, g-aminobutyric acid, acetylcholine and dopamine.

  • ATP, which is released as a cotransmitter from neurons and astrocytes in the brain, and its breakdown product adenosine are involved in learning and memory, locomotion, feeding and sleep.

  • Purinergic signalling has important roles in various pathophysiological conditions of the central nervous system (CNS) including: trauma, ischaemia, neurodegenerative diseases (including Parkinson's, Alzheimer's and Huntington's disease and amyotrophic lateral sclerosis), neuroimmune and inflammatory diseases (including multiple sclerosis), epilepsy and neuropsychiatric disorders (including depression and anxiety, schizophrenia, alcohol and drug addiction) and neuropathic pain (including migraine).

  • P2X1, P2X4, P2X7, P2Y6 and P2Y12 receptors are expressed by microglia, which are immune cells in the CNS, and appear to have a major role in a number of disease conditions.

  • Therapeutic strategies involving purinergic compounds are being developed for these diseases, in particular: A2A receptor antagonists for Parkinson's disease; P2X7 receptor antagonists for brain damage following trauma, inflammation and neuropathic pain; P2X3, P2X2/3 and P2X4 receptor antagonists are being targeted for chronic pain; P2Y1 receptor agonists for multiple sclerosis; A1 agonists and A2A and P2X7 antagonists for epileptic seizures and A1 and A2A receptor agonists for mood disorders.

  • Although there is compelling evidence that purinergic signalling has an important role in CNS diseases, the use of purinergic agents is not yet in the clinic and is limited by the lack of selective agents that are orally bioavailable, cross the blood–brain barrier and are stable in vivo.

Abstract

Purines have key roles in neurotransmission and neuromodulation, with their effects being mediated by the purine and pyrimidine receptor subfamilies, P1, P2X and P2Y. Recently, purinergic mechanisms and specific receptor subtypes have been shown to be involved in various pathological conditions including brain trauma and ischaemia, neurodegenerative diseases involving neuroimmune and neuroinflammatory reactions, as well as in neuropsychiatric diseases, including depression and schizophrenia. This article reviews the role of purinergic signalling in CNS disorders, highlighting specific purinergic receptor subtypes, most notably A2A, P2X4 and P2X7, that might be therapeutically targeted for the treatment of these conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purinergic signalling in the spinal cord.
Figure 2: Hypothetical schematic of the roles of purine nucleotides and nucleosides in pain pathways.

Similar content being viewed by others

References

  1. Burnstock, G. Purinergic nerves. Pharmacol. Rev. 24, 509–581 (1972).

    CAS  PubMed  Google Scholar 

  2. Burnstock, G., Campbell, G., Satchell, D. & Smythe, A. Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br. J. Pharmacol. 40, 668–688 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Burnstock, G. Do some nerve cells release more than one transmitter? Neuroscience 1, 239–248 (1976).

    CAS  PubMed  Google Scholar 

  4. Burnstock, G. Physiology and pathophysiology of purinergic neurotransmission. Physiol. Rev. 87, 659–797 (2007). A recent, comprehensive review of purinergic signalling in the nervous system.

    CAS  PubMed  Google Scholar 

  5. Burnstock, G. A basis for distinguishing two types of purinergic receptor, in Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach (eds Straub, R. W. & Bolis, L.) 107–118 (Raven Press, New York, 1978).

    Google Scholar 

  6. Burnstock, G. & Kennedy, C. Is there a basis for distinguishing two types of P2-purinoceptor? Gen. Pharmacol. 16, 433–440 (1985).

    CAS  PubMed  Google Scholar 

  7. Ralevic, V. & Burnstock, G. Receptors for purines and pyrimidines. Pharmacol. Rev. 50, 413–492 (1998).

    CAS  PubMed  Google Scholar 

  8. Abbracchio, M. P. et al. International Union of Pharmacology. Update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol. Rev. 58, 281–341 (2006).

    CAS  PubMed  Google Scholar 

  9. Burnstock, G. Purine and pyrimidine receptors. Cellular and Molecular Life Sciences 64, 1471–1483 (2007). A recent update of subtypes of receptors for purines and pyrimidines.

    CAS  PubMed  Google Scholar 

  10. Köles, L., Fürst, S. & Illes, P. Purine ionotropic (P2X) receptors. Curr. Pharm. Des. 13, 2368–2384 (2007).

    PubMed  Google Scholar 

  11. North, R. A. & Verkhratsky, A. Purinergic transmission in the central nervous system. Pflugers Arch. 452, 479–485 (2006).

    CAS  PubMed  Google Scholar 

  12. Bonan, C. D., Schetinger, M. R., Battastini, A. M. & Sarkis, J. J. Ectonucleotidases and synaptic plasticity: implications in physiological and pathological conditions. Drug Dev. Res. 52, 57–65 (2001).

    CAS  Google Scholar 

  13. Burnstock, G. & Knight, G. E. Cellular distribution and functions of P2 receptor subtypes in different systems. Int. Rev. Cytol. 240, 31–304 (2004).

    CAS  PubMed  Google Scholar 

  14. Fields, D. & Burnstock, G. Purinergic signalling in neuron–glial interactions. Nature Rev. Neurosci. 7, 423–436 (2006). A review of the growing recognition of the involvement of purinergic signalling in neuron–glial interactions in the CNS.

    CAS  Google Scholar 

  15. Inoue, K., Koizumi, S. & Tsuda, M. The role of nucleotides in the neuron-glia communication responsible for the brain functions. J. Neurochem. 102, 1447–1458 (2007).

    CAS  PubMed  Google Scholar 

  16. Abbracchio, M. P. & Burnstock, G. Purinergic signalling: pathophysiological roles. Jpn. J. Pharmacol. 78, 113–145 (1998).

    CAS  PubMed  Google Scholar 

  17. Mishra, S. K. et al. Extracellular nucleotide signaling in adult neural stem cells: synergism with growth factor-mediated cellular proliferation. Development 133, 675–684 (2006).

    CAS  PubMed  Google Scholar 

  18. Neary, J. T. et al. Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends Neurosci. 19, 13–18 (1996).

    CAS  PubMed  Google Scholar 

  19. Pankratov, Y. V., Lalo, U. V. & Krishtal, O. A. Role for P2X receptors in long-term potentiation. J. Neurosci. 22, 8363–8369 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pedrazza, E. L. et al. Habituation to an open field alters ecto-nucleotidase activities in rat hippocampal synaptosomes. Neurosci. Lett. 413, 21–24 (2007).

    CAS  PubMed  Google Scholar 

  21. Basheer, R., Strecker, R. E., Thakkar, M. M. & McCarley, R. W. Adenosine and sleep-wake regulation. Prog. Neurobiol. 73, 379–396 (2004).

    CAS  PubMed  Google Scholar 

  22. Barraco, R., Martens, K. A., Parizon, M. & Normile, H. J. Adenosine A2a receptors in the nucleus accumbens mediate locomotor depression. Brain Res. Bull. 31, 397–404 (1993).

    CAS  PubMed  Google Scholar 

  23. Florenzano, F. et al. P2X2R purinergic receptor subunit mRNA and protein are expressed by all hypothalamic hypocretin/orexin neurons. J. Comp. Neurol. 498, 58–67 (2006).

    CAS  PubMed  Google Scholar 

  24. Brockhaus, J., Dressel, D., Herold, S. & Deitmer, J. W. Purinergic modulation of synaptic input to Purkinje neurons in rat cerebellar brain slices. Eur. J. Neurosci. 19, 2221–2230 (2004).

    PubMed  Google Scholar 

  25. Kittner, H., Krügel, U., Hoffmann, E. & Illes, P. Modulation of feeding behaviour by blocking purinergic receptors in the rat nucleus accumbens: a combined microdialysis, electroencephalographic and behavioural study. Eur. J. Neurosci. 19, 396–404 (2004).

    CAS  PubMed  Google Scholar 

  26. Kittner, H. et al. Enhanced food intake after stimulation of hypothalamic P2Y1 receptors in rats: modulation of feeding behaviour by extracellular nucleotides. Eur. J. Neurosci. 24, 2049–2056 (2006).

    PubMed  Google Scholar 

  27. Franke, H., Krügel, U. & Illes, P. P2 receptors and neuronal injury. Pflugers Arch. 452, 622–644 (2006). A valuable review of the roles of P2 receptors in neuronal injury and regeneration.

    CAS  PubMed  Google Scholar 

  28. Neary, J. T., Kang, Y., Tran, M. & Feld, J. Traumatic injury activates protein kinase B/Akt in cultured astrocytes: role of extracellular ATP and P2 purinergic receptors. J. Neurotrauma 22, 491–500 (2005).

    PubMed  Google Scholar 

  29. Neary, J. T. et al. P2 receptor signalling, proliferation of astrocytes, and expression of molecules involved in cell–cell interactions. Novartis Found. Symp. 276, 131–143 (2006). A good review of the trophic roles of purines and pyrimidines in the CNS.

    CAS  PubMed  Google Scholar 

  30. Tran, M. D. & Neary, J. T. Purinergic signaling induces thrombospondin-1 expression in astrocytes. Proc. Natl Acad. Sci. USA. 103, 9321–9326 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nature Neurosci. 8, 752–758 (2005). An important experimental study of the neuroprotective roles of ATP.

    CAS  PubMed  Google Scholar 

  32. Färber, K. & Kettenmann, H. Purinergic signaling and microglia. Pflugers Arch. 452, 615–621 (2006). An important summary of the roles of purinoceptors expressed in microglia.

    PubMed  Google Scholar 

  33. Neary, J. T., Kang, Y., Willoughby, K. A. & Ellis, E. F. Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors. J. Neurosci. 23, 2348–2356 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Haynes, S. E. et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nature Neurosci. 9, 1512–1519 (2006).

    CAS  PubMed  Google Scholar 

  35. Ohsawa, K. et al. Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis. Glia 55, 604–616 (2007).

    PubMed  Google Scholar 

  36. Xiang, Z. et al. Microglial morphology and its transformation after challenge by extracellular ATP in vitro. J. Neurosci. Res. 83, 91–101 (2006).

    CAS  PubMed  Google Scholar 

  37. Koizumi, S. et al. UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446, 1091–1095 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, Z. et al. Lesional accumulation of P2X4 receptor+ monocytes following experimental traumatic brain injury. Exp. Neurol. 197, 252–257 (2006).

    CAS  PubMed  Google Scholar 

  39. Bianco, F. et al. A role for P2X7 in microglial proliferation. J. Neurochem. 99, 745–758 (2006).

    CAS  PubMed  Google Scholar 

  40. Franke, H. & Illes, P. Involvement of P2 receptors in the growth and survival of neurons in the CNS. Pharmacol. Ther. 109, 297–324 (2006).

    CAS  PubMed  Google Scholar 

  41. Washburn, K. B. & Neary, J. T. P2 purinergic receptors signal to STAT3 in astrocytes: Difference in STAT3 responses to P2Y and P2X receptor activation. Neuroscience 142, 411–423 (2006).

    CAS  PubMed  Google Scholar 

  42. Brambilla, R. et al. Cyclo-oxygenase-2 mediates P2Y receptor-induced reactive astrogliosis. Br. J. Pharmacol. 126, 563–567 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Florenzano, F. et al. Cerebellar lesion up-regulates P2X1 and P2X2 purinergic receptors in precerebellar nuclei. Neuroscience 115, 425–434 (2002).

    CAS  PubMed  Google Scholar 

  44. Arthur, D. B., Georgi, S., Akassoglou, K. & Insel, P. A. Inhibition of apoptosis by P2Y2 receptor activation: novel pathways for neuronal survival. J. Neurosci. 26, 3798–3804 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Chorna, N. E. et al. P2Y2 receptors activate neuroprotective mechanisms in astrocytic cells. J. Neurochem. 91, 119–132 (2004).

    CAS  PubMed  Google Scholar 

  46. Inoue, K. ATP receptors for the protection of hippocampal functions. Jpn. J. Pharmacol. 78, 405–410 (1998).

    CAS  PubMed  Google Scholar 

  47. Franke, H. et al. Changes in purinergic signaling after cerebral injury — involvement of glutamatergic mechanisms? Int. J. Dev. Neurosci. 24, 123–132 (2006).

    CAS  PubMed  Google Scholar 

  48. Matute, C. et al. P2X7 receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J. Neurosci. 27, 9525–9533 (2007). An experimental study of the role of P2X 7 receptors in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, X. et al. P2X7 receptor inhibition improves recovery after spinal cord injury. Nature Med. 10, 821–827 (2004).

    CAS  PubMed  Google Scholar 

  50. Sperlágh, B. et al. Purinergic modulation of glutamate release under ischemic-like conditions in the hippocampus. Neuroscience 149, 99–111 (2007). A paper describing the purinergic modulation of glutamate release in ischaemic hippocampus.

    PubMed  Google Scholar 

  51. Aihara, H. et al. Adenosine triphosphate accelerates recovery from hypoxic/hypoglycemic perturbation of guinea pig hippocampal neurotransmission via a P2 receptor. Brain Res. 952, 31–37 (2002).

    CAS  PubMed  Google Scholar 

  52. Lämmer, A. et al. Neuroprotective effects of the P2 receptor antagonist PPADS on focal cerebral ischaemia-induced injury in rats. Eur. J. Neurosci. 23, 2824–2828 (2006).

    PubMed  Google Scholar 

  53. Braun, N. et al. Upregulation of the enzyme chain hydrolyzing extracellular ATP after transient forebrain ischemia in the rat. J. Neurosci. 18, 4891–4900 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cavaliere, F. et al. Up-regulation of P2X2, P2X4 receptor and ischemic cell death: prevention by P2 antagonists. Neuroscience 120, 85–98 (2003).

    CAS  PubMed  Google Scholar 

  55. Frenguelli, B. G., Wigmore, G., Llaudet, E. & Dale, N. Temporal and mechanistic dissociation of ATP and adenosine release during ischaemia in the mammalian hippocampus. J. Neurochem. 101, 1400–1413 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Franke, H. et al. P2X7 receptor expression after ischemia in the cerebral cortex of rats. J. Neuropathol. Exp. Neurol. 63, 686–699 (2004).

    CAS  PubMed  Google Scholar 

  57. Melani, A. et al. P2X7 receptor modulation on microglial cells and reduction of brain infarct caused by middle cerebral artery occlusion in rat. J. Cereb. Blood Flow Metab. 26, 974–982 (2006).

    CAS  PubMed  Google Scholar 

  58. Wirkner, K. et al. Supersensitivity of P2X7 receptors in cerebrocortical cell cultures after in vitro ischemia. J. Neurochem. 95, 1421–1437 (2005).

    CAS  PubMed  Google Scholar 

  59. Le Feuvre, R. A., Brough, D., Touzani, O. & Rothwell, N. J. Role of P2X7 receptors in ischemic and excitotoxic brain injury in vivo. J. Cereb. Blood Flow Metab. 23, 381–384 (2003).

    CAS  PubMed  Google Scholar 

  60. Cavaliere, F., Dinkel, K. & Reymann, K. Microglia response and P2 receptor participation in oxygen/glucose deprivation-induced cortical damage. Neuroscience 136, 615–623 (2005).

    CAS  PubMed  Google Scholar 

  61. Zhang, Y., Deng, P., Li, Y. & Xu, Z. C. Enhancement of excitatory synaptic transmission in spiny neurons after transient forebrain ischemia. J. Neurophysiol. 95, 1537–1544 (2006).

    PubMed  Google Scholar 

  62. Schock, S. C. et al. Cortical spreading depression releases ATP into the extracellular space and purinergic receptor activation contributes to the induction of ischemic tolerance. Brain Res. 1168, 129–138 (2007).

    CAS  PubMed  Google Scholar 

  63. Pedata, F. et al. The role of ATP and adenosine in the brain under normoxic and ischemic conditions. Purinergic Signal. 3, 299–310 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen, H. H. et al. Extracellular ATP-dependent upregulation of the transcription cofactor LMO4 promotes neuron survival from hypoxia. Exp. Cell Res. 313, 3106–3116 (2007).

    CAS  PubMed  Google Scholar 

  65. Briede, J. & Duburs, G. Protective effect of cerebrocrast on rat brain ischaemia induced by occlusion of both common carotid arteries. Cell Biochem. Funct. 25, 203–210 (2007).

    CAS  PubMed  Google Scholar 

  66. Volonté, C. et al. Extracellular ATP and neurodegeneration. Curr. Drug Targets. CNS Neurol. Disord. 2, 403–412 (2003).

    PubMed  Google Scholar 

  67. Watanabe, S., Yoshimi, Y. & Ikekita, M. Neuroprotective effect of adenine on purkinje cell survival in rat cerebellar primary cultures. J. Neurosci. Res. 74, 754–759 (2003).

    CAS  PubMed  Google Scholar 

  68. Ogata, T. et al. Adenosine triphosphate inhibits cytokine release from lipopolysaccharide-activated microglia via P2y receptors. Brain Res. 981, 174–183 (2003).

    CAS  PubMed  Google Scholar 

  69. Purcell, W. M. & Atterwill, C. K. Mast cells in neuroimmune function: neurotoxicological and neuropharmacological perspectives. Neurochem. Res. 20, 521–532 (1995).

    CAS  PubMed  Google Scholar 

  70. Calon, F. et al. Increased adenosine A2A receptors in the brain of Parkinson's disease patients with dyskinesias. Brain 127, 1075–1084 (2004).

    PubMed  Google Scholar 

  71. Ismayilova, N., Crossman, A., Verkhratsky, A. & Brotchie, J. Effects of adenosine A1, dopamine D1 and metabotropic glutamate 5 receptors-modulating agents on locomotion of the reserpinised rats. Eur. J. Pharmacol. 497, 187–195 (2004).

    CAS  PubMed  Google Scholar 

  72. Schwarzschild, M. A. Targeting adenosine A2A receptors in Parkinson's disease and other CNS disorders. Prog. Neurobiol. 83, 261–347 (2007). Review of therapeutic treatment of Parkinson's disease with A 2A receptor antagonists.

    PubMed  PubMed Central  Google Scholar 

  73. Jun, D. & Kim, K. ATP-mediated necrotic volume increase (NVI) in substantia nigra pars compacta dopaminergic neuron. Society for Neuroscience, Washington, DC. Abstr. 222, 18 (2004).

    Google Scholar 

  74. Heine, C. et al. P2 receptor expression in the dopaminergic system of the rat brain during development. Neuroscience 149, 165–181 (2007).

    CAS  PubMed  Google Scholar 

  75. Morales, I. et al. Substantia nigra osmoregulation: taurine and ATP involvement. Am. J. Physiol. Cell Physiol. 292, C1934–C1941 (2007).

    CAS  PubMed  Google Scholar 

  76. Jacobson, K. A. et al. Agonists and antagonists for P2 receptors, in Novartis Foundation Symposium 276 Purinergic Signalling in Neuron–Glial Interactions 58–68 (John Wiley & Sons Ltd., Chichester, 2006). Detailed account of the medicinal chemistry of P2 receptor agonists and antagonists.

    Google Scholar 

  77. Xu, J. et al. Prostaglandin E2 production in astrocytes: regulation by cytokines, extracellular ATP, and oxidative agents. Prostaglandins Leukot. Essent. Fatty Acids 69, 437–448 (2003).

    CAS  PubMed  Google Scholar 

  78. Parvathenani, L. K. et al. P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer's disease. J. Biol. Chem. 278, 13309–13317 (2003).

    CAS  PubMed  Google Scholar 

  79. McLarnon, J. G., Ryu, J. K., Walker, D. G. & Choi, H. B. Upregulated expression of purinergic P2X7 receptor in Alzheimer disease and amyloid-β peptide-treated microglia and in peptide-injected rat hippocampus. J. Neuropathol. Exp. Neurol. 65, 1090–1097 (2006). This study shows an upregulation of P2X 7 receptors in Alzheimer's disease.

    CAS  PubMed  Google Scholar 

  80. Rampe, D., Wang, L. & Ringheim, G. E. P2X7 receptor modulation of β-amyloid- and LPS-induced cytokine secretion from human macrophages and microglia. J. Neuroimmunol. 147, 56–61 (2004).

    CAS  PubMed  Google Scholar 

  81. Tumini, E. et al. The G51S purine nucleoside phosphorylase polymorphism is associated with cognitive decline in Alzheimer's disease patients. Hum. Psychopharmacol. 22, 75–80 (2007).

    CAS  PubMed  Google Scholar 

  82. Moore, D., Iritani, S., Chambers, J. & Emson, P. Immunohistochemical localization of the P2Y1 purinergic receptor in Alzheimer's disease. Neuroreport 11, 3799–3803 (2000).

    CAS  PubMed  Google Scholar 

  83. Camden, J. M. et al. P2Y2 nucleotide receptors enhance α-secretase-dependent amyloid precursor protein processing. J. Biol. Chem. 280, 18696–18702 (2005).

    CAS  PubMed  Google Scholar 

  84. McLarnon, J. G. et al. Perturbations in calcium-mediated signal transduction in microglia from Alzheimer's disease patients. J. Neurosci. Res. 81, 426–435 (2005).

    CAS  PubMed  Google Scholar 

  85. Kalaria, R. N., Sromek, S., Wilcox, B. J. & Unnerstall, J. R. Hippocampal adenosine A1 receptors are decreased in Alzheimer's disease. Neurosci. Lett. 118, 257–260 (1990).

    CAS  PubMed  Google Scholar 

  86. Angulo, E. et al. A1 adenosine receptors accumulate in neurodegenerative structures in Alzheimer disease and mediate both amyloid precursor protein processing and tau phosphorylation and translocation. Brain Pathol. 13, 440–451 (2003).

    CAS  PubMed  Google Scholar 

  87. Martinez-Mir, M. I., Probst, A. & Palacios, J. M. Adenosine A2 receptors: selective localization in the human basal ganglia and alterations with disease. Neuroscience 42, 697–706 (1991).

    CAS  PubMed  Google Scholar 

  88. Popoli, P. et al. Adenosine A2A receptor blockade prevents EEG and motor abnormalities in a rat model of Huntington's disease. Drug Dev. Res. 50, 69 (2000)

    Google Scholar 

  89. Bauer, A. et al. Striatal loss of A1 adenosine receptors in Huntington's disease — a PET study. J. Neural Transm. 114, XXI (2007).

    Google Scholar 

  90. Tarditi, A. et al. Early and transient alteration of adenosine A2A receptor signaling in a mouse model of Huntington disease. Neurobiol. Dis. 23, 44–53 (2006).

    CAS  PubMed  Google Scholar 

  91. Popoli, P. et al. Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors in Huntington's disease. Prog. Neurobiol. 81, 331–348 (2007). A review of the therapeutic potential of A 2A receptors in Huntington's disease.

    CAS  PubMed  Google Scholar 

  92. Diez-Zaera, M. et al. Purinergic system in Huntington's disease: development of new therapeutic strategies. J. Neurochem. 101, S66 (2007).

    Google Scholar 

  93. Andries, M., Van Damme, P., Robberecht, W. & Van Den Bosch, L. Ivermectin inhibits AMPA receptor-mediated excitotoxicity in cultured motor neurons and extends the life span of a transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis. 25, 8–16 (2007).

    CAS  PubMed  Google Scholar 

  94. Kassa, R. M., Bentivoglio, M. & Mariotti, R. Changes in the expression of P2X1 and P2X2 purinergic receptors in facial motoneurons after nerve lesions in rodents and correlation with motoneuron degeneration. Neurobiol. Dis. 25, 121–133 (2007).

    CAS  PubMed  Google Scholar 

  95. Trudeau, F., Gagnon, S. & Massicotte, G. Hippocampal synaptic plasticity and glutamate receptor regulation: influences of diabetes mellitus. Eur. J. Pharmacol. 490, 177–186 (2004).

    CAS  PubMed  Google Scholar 

  96. Cox, D. J. et al. Relationships between hyperglycemia and cognitive performance among adults with type 1 and type 2 diabetes. Diabetes Care 28, 71–77 (2005).

    PubMed  Google Scholar 

  97. Duarte, J. M., Oses, J. P., Rodrigues, R. J. & Cunha, R. A. Modification of purinergic signaling in the hippocampus of streptozotocin-induced diabetic rats. Neuroscience 149, 382–391 (2007).

    CAS  PubMed  Google Scholar 

  98. Lucas, S. M., Rothwell, N. J. & Gibson, R. M. The role of inflammation in CNS injury and disease. Br. J. Pharmacol. 147, S232–S240 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Bours, M. J. et al. Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol. Ther. 112, 358–404 (2006).

    CAS  PubMed  Google Scholar 

  100. Sperlágh, B. & Illes, P. Purinergic modulation of microglial cell activation. Purinergic Signal. 3, 117–127 (2007).

    PubMed  Google Scholar 

  101. Marchand, F., Perretti, M. & McMahon, S. B. Role of the immune system in chronic pain. Nature Rev. Neurosci. 6, 521–532 (2005).

    CAS  Google Scholar 

  102. Moalem, G. & Tracey, D. J. Immune and inflammatory mechanisms in neuropathic pain. Brain Res. Rev. 51, 240–264 (2006).

    CAS  PubMed  Google Scholar 

  103. Ferrari, D., Stroh, C. & Schulze-Osthoff, K. P2X7/P2Z purinoreceptor-mediated activation of transcription factor NFAT in microglial cells. J. Biol. Chem. 274, 13205–13210 (1999).

    CAS  PubMed  Google Scholar 

  104. Potucek, Y. D., Crain, J. M. & Watters, J. J. Purinergic receptors modulate MAP kinases and transcription factors that control microglial inflammatory gene expression. Neurochem. Int. 49, 204–214 (2006).

    CAS  PubMed  Google Scholar 

  105. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).

    CAS  PubMed  Google Scholar 

  106. Di Virgilio, F. Liaisons dangereuses: P2X7 and the inflammasome. Trends Pharmacol. Sci. 28, 465–472 (2007). A valuable account of the role of P2X 7 receptors in immune responses in brain.

    CAS  PubMed  Google Scholar 

  107. Suzuki, T. et al. Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia. J. Neurosci. 24, 1–7 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Lemaire, I. et al. Involvement of the purinergic P2X7 receptor in the formation of multinucleated giant cells. J. Immunol. 177, 7257–7265 (2006).

    CAS  PubMed  Google Scholar 

  109. Takenouchi, T., Sato, M. & Kitani, H. Lysophosphatidylcholine potentiates Ca2+ influx, pore formation and p44/42 MAP kinase phosphorylation mediated by P2X7 receptor activation in mouse microglial cells. J. Neurochem. 102, 1518–1532 (2007).

    CAS  PubMed  Google Scholar 

  110. Takenouchi, T. et al. Prion infection correlates with hypersensitivity of P2X7 nucleotide receptor in a mouse microglial cell line. FEBS Lett. 581, 3019–3026 (2007).

    CAS  PubMed  Google Scholar 

  111. Guo, L. H., Trautmann, K. & Schluesener, H. J. Expression of P2X4 receptor by lesional activated microglia during formalin-induced inflammatory pain. J. Neuroimmunol. 163, 120–127 (2005).

    CAS  PubMed  Google Scholar 

  112. Raouf, R. et al. Differential regulation of microglial P2X4 and P2X7 ATP receptors following LPS-induced activation. Neuropharmacology 53, 496–504 (2007).

    CAS  PubMed  Google Scholar 

  113. Abbracchio, M. P. & Verderio, C. Pathophysiological roles of P2 receptors in glial cells, in Novartis Foundation Symposium 276 Purinergic Signalling in Neuron–Glial Interactions 91–103 (John Wiley & Sons Ltd., Chichester, 2006).

    Google Scholar 

  114. Panenka, W. et al. P2X7-like receptor activation in astrocytes increases chemokine monocyte chemoattractant protein-1 expression via mitogen-activated protein kinase. J. Neurosci. 21, 7135–7142 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Agresti, C. et al. ATP regulates oligodendrocyte progenitor migration, proliferation, and differentiation: involvement of metabotropic P2 receptors. Brain Res. Brain Res. Rev. 48, 157–165 (2005).

    CAS  PubMed  Google Scholar 

  116. Narcisse, L. et al. The cytokine IL-1β transiently enhances P2X7 receptor expression and function in human astrocytes. Glia 49, 245–258 (2005).

    PubMed  PubMed Central  Google Scholar 

  117. Spanevello, R. M. et al. Apyrase and 5′-nucleotidase activities in synaptosomes from the cerebral cortex of rats experimentally demyelinated with ethidium bromide and treated with interferon-β. Neurochem. Res. 31, 455–462 (2006).

    CAS  PubMed  Google Scholar 

  118. Guo, L. H. & Schluesener, H. J. Lesional accumulation of P2X4 receptor+ macrophages in rat CNS during experimental autoimmune encephalomyelitis. Neuroscience 134, 199–205 (2005).

    CAS  PubMed  Google Scholar 

  119. Chen, L. & Brosnan, C. F. Exacerbation of experimental autoimmune encephalomyelitis in P2X7R−/− mice: evidence for loss of apoptotic activity in lymphocytes. J. Immunol. 176, 3115–3126 (2006).

    CAS  PubMed  Google Scholar 

  120. Borsellino, G. et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110, 1225–1232 (2007).

    CAS  PubMed  Google Scholar 

  121. Knutsen, L. J. S. & Murray, T. F. Adenosine and ATP in epilepsy, in Purinergic Approaches in Experimental Therapeutics (eds Jacobson, K. A. & Jarvis, M. F.) 423–447 (Wiley-Liss, New York, 1997).

    Google Scholar 

  122. Ross, F. M., Brodie, M. J. & Stone, T. W. Modulation by adenine nucleotides of epileptiform activity in the CA3 region of rat hippocampal slices. Br. J. Pharmacol. 123, 71–80 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Vianna, E. P. et al. Evidence that ATP participates in the pathophysiology of pilocarpine-induced temporal lobe epilepsy: fluorimetric, immunohistochemical, and Western blot studies. Epilepsia 43, 227–229 (2002).

    CAS  PubMed  Google Scholar 

  124. Rappold, P. M., Lynd-Balta, E. & Joseph, S. A. P2X7 receptor immunoreactive profile confined to resting and activated microglia in the epileptic brain. Brain Res. 1089, 171–178 (2006).

    CAS  PubMed  Google Scholar 

  125. Wieraszko, A. & Seyfried, T. N. Increased amount of extracellular ATP in stimulated hippocampal slices of seizure prone mice. Neurosci. Lett. 106, 287–293 (1989). An important early experimental study of ATP release in the hippocampus during seizures.

    CAS  PubMed  Google Scholar 

  126. Slézia, A. et al. Uridine release during aminopyridine-induced epilepsy. Neurobiol. Dis 16, 490–499 (2004).

    PubMed  Google Scholar 

  127. Nicolaidis, R., Bruno, A. N., Sarkis, J. J. & Souza, D. O. Increase of adenine nucleotide hydrolysis in rat hippocampal slices after seizures induced by quinolinic acid. Neurochem. Res. 30, 385–390 (2005).

    CAS  PubMed  Google Scholar 

  128. Oses, J. P. Modification by kainate-induced convulsions of the density of presynaptic P2X receptors in the rat hippocampus. Purinergic Signal. 2, 252–253 (2006).

    Google Scholar 

  129. Tian, G. F. et al. An astrocytic basis of epilepsy. Nature Med. 11, 973–981 (2005).

    CAS  PubMed  Google Scholar 

  130. Dragunow, M. Purinergic mechanisms in epilepsy. Prog. Neurobiol. 31, 85–108 (1988).

    CAS  PubMed  Google Scholar 

  131. Zeraati, M. et al. Adenosine A1 and A2A receptors of hippocampal CA1 region have opposite effects on piriform cortex kindled seizures in rats. Seizure 15, 41–48 (2006). A study of the roles of adenosine receptors in seizures.

    PubMed  Google Scholar 

  132. Dulla, C. G. et al. Adenosine and ATP link PCO2 to cortical excitability via pH. Neuron 48, 1011–1023 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Ekonomou, A., Angelatou, F., Vergnes, M. & Kostopoulos, G. Lower density of A1 adenosine receptors in nucleus reticularis thalami in rats with genetic absence epilepsy. Neuroreport 9, 2135–2140 (1998).

    CAS  PubMed  Google Scholar 

  134. Machado-Vieira, R., Lara, D. R., Souza, D. O. & Kapczinski, F. Purinergic dysfunction in mania: an integrative model. Med. Hypotheses 58, 297–304 (2002).

    CAS  PubMed  Google Scholar 

  135. Lam, P., Hong, C. J. & Tsai, S. J. Association study of A2a adenosine receptor genetic polymorphism in panic disorder. Neurosci. Lett. 378, 98–101 (2005).

    CAS  PubMed  Google Scholar 

  136. Williams, M. Purinergic receptors and central nervous system function, in Psychopharmacology: The Third Generation of Progress (ed. Meltzer, H. Y.) 289–301 (Raven Press, New York, 1987).

    Google Scholar 

  137. Ward, R. P. & Dorsa, D. M. Molecular and behavioral effects mediated by Gs-coupled adenosine A2a, but not serotonin 5-HT4 or 5-HT6 receptors following antipsychotic administration. Neuroscience 89, 927–938 (1999).

    CAS  PubMed  Google Scholar 

  138. Chen, J. F. et al. Selective attenuation of psychostimulant-induced behavioral responses in mice lacking A2A adenosine receptors. Neuroscience 97, 195–204 (2000).

    CAS  PubMed  Google Scholar 

  139. Judelson, D. A. et al. Effect of chronic caffeine intake on choice reaction time, mood, and visual vigilance. Physiol. Behav. 85, 629–634 (2005).

    CAS  PubMed  Google Scholar 

  140. Wagner, J. A. & Katz, R. J. Purinergic control of anxiety: direct behavioral evidence in the rat. Neurosci. Lett. 43, 333–337 (1983).

    CAS  PubMed  Google Scholar 

  141. Johansson, B. et al. Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc. Natl Acad. Sci. USA. 98, 9407–9412 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Kittner, H. et al. Stimulation of P2Y1 receptors causes anxiolytic-like effects in the rat elevated plus-maze: implications for the involvement of P2Y1 receptor-mediated nitric oxide production. Neuropsychopharmacology 28, 435–444 (2003).

    CAS  PubMed  Google Scholar 

  143. Vinadé, E. R. et al. Chronically administered guanosine is anticonvulsant, amnesic and anxiolytic in mice. Brain Res. 977, 97–102 (2003).

    PubMed  Google Scholar 

  144. Kaster, M. P. et al. Adenosine administration produces an antidepressant-like effect in mice: evidence for the involvement of A1 and A2A receptors. Neurosci. Lett. 355, 21–24 (2004). A study describing the involvement of A 1 and A 2A receptors in depression.

    CAS  PubMed  Google Scholar 

  145. Alesci, S. et al. Major depression is associated with significant diurnal elevations in plasma interleukin-6 levels, a shift of its circadian rhythm, and loss of physiological complexity in its secretion: clinical implications. J. Clin. Endocrinol. Metab. 90, 2522–2530 (2005).

    CAS  PubMed  Google Scholar 

  146. Lucae, S. et al. P2RX7, a gene coding for a purinergic ligand-gated ion channel, is associated with major depressive disorder. Hum. Mol. Genet. 15, 2438–2445 (2006). A description of the involvement of P2X 7 receptors in depression.

    CAS  PubMed  Google Scholar 

  147. Barden, N. et al. Analysis of single nucleotide polymorphisms in genes in the chromosome 12Q24.31 region points to P2RX7 as a susceptibility gene to bipolar affective disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 141, 374–382 (2006).

    Google Scholar 

  148. Busnello, J. V. et al. Acute and chronic electroconvulsive shock in rats: effects on peripheral markers of neuronal injury and glial activity. Life Sci. 78, 3013–3017 (2006).

    CAS  PubMed  Google Scholar 

  149. Ushijima, I. et al. Effects of dilazep (Comelian) on the central purinergic system: inhibitory effects on clonidine-induced aggressive behavior. Eur. J. Pharmacol. 161, 245–248 (1989).

    CAS  PubMed  Google Scholar 

  150. Zou, C. J., Onaka, T. O. & Yagi, K. Effects of suramin on neuroendocrine and behavioural responses to conditioned fear stimuli. Neuroreport 9, 997–999 (1998).

    CAS  PubMed  Google Scholar 

  151. Corodimas, K. P. & Tomita, H. Adenosine A1 receptor activation selectively impairs the acquisition of contextual fear conditioning in rats. Behav. Neurosci. 115, 1283–1290 (2001).

    CAS  PubMed  Google Scholar 

  152. Krügel, U. et al. P2 receptors are involved in the mediation of motivation-related behavior. Purinergic Signal. 1, 21–29 (2004).

    PubMed  PubMed Central  Google Scholar 

  153. Short, J. L., Ledent, C., Drago, J. & Lawrence, A. J. Receptor crosstalk: characterization of mice deficient in dopamine D1 and adenosine A2A receptors. Neuropsychopharmacology 31, 525–534 (2006).

    CAS  PubMed  Google Scholar 

  154. Van Calker, D. & Biber, K. The role of glial adenosine receptors in neural resilience and the neurobiology of mood disorders. Neurochem. Res. 30, 1205–1217 (2005).

    PubMed  Google Scholar 

  155. Inoue, K., Koizumi, S. & Ueno, S. Implication of ATP receptors in brain functions. Prog. Neurobiol. 50, 483–492 (1996).

    CAS  PubMed  Google Scholar 

  156. Lara, D. R., Dall'Igna, O. P., Ghisolfi, E. S. & Brunstein, M. G. Involvement of adenosine in the neurobiology of schizophrenia and its therapeutic implications. Prog. Neuropsychopharmacol. Biol. Psychiatry 30, 617–629 (2006). This paper suggests that adenosine A 1 receptors are involved in schizophrenia.

    CAS  PubMed  Google Scholar 

  157. Kafka, S. H. & Corbett, R. Selective adenosine A2A receptor/dopamine D2 receptor interactions in animal models of schizophrenia. Eur. J. Pharmacol. 295, 147–154 (1996).

    CAS  PubMed  Google Scholar 

  158. Tsai, S. J. Adenosine A2a receptor/dopamine D2 receptor hetero-oligomerization: a hypothesis that may explain behavioral sensitization to psychostimulants and schizophrenia. Med. Hypotheses 64, 197–200 (2005).

    CAS  PubMed  Google Scholar 

  159. Lara, D. R. & Souza, D. O. Schizophrenia: a purinergic hypothesis. Med. Hypotheses 54, 157–166 (2000).

    CAS  PubMed  Google Scholar 

  160. Deckert, J. et al. Up-regulation of striatal adenosine A2A receptors in schizophrenia. Neuroreport 14, 313–316 (2003).

    CAS  PubMed  Google Scholar 

  161. Yee, B. K. et al. Transgenic overexpression of adenosine kinase in brain leads to multiple learning impairments and altered sensitivity to psychomimetic drugs. Eur. J. Neurosci. 26, 3237–3252 (2007).

    PubMed  Google Scholar 

  162. Franke, H., Kittner, H., Grosche, J. & Illes, P. Enhanced P2Y1 receptor expression in the brain after sensitisation with d-amphetamine. Psychopharmacology (Berl) 167, 187–194 (2003).

    CAS  Google Scholar 

  163. Davies, D. L. et al. Ethanol differentially affects ATP-gated P2X3 and P2X4 receptor subtypes expressed in Xenopus oocytes. Neuropharmacology 49, 243–253 (2005).

    CAS  PubMed  Google Scholar 

  164. Burnstock, G. Purine-mediated signalling in pain and visceral perception. Trends Pharmacol. Sci. 22, 182–188 (2001).

    CAS  PubMed  Google Scholar 

  165. Burnstock, G. Purinergic P2 receptors as targets for novel analgesics. Pharmacol. Therap. 110, 433–454 (2006). A comprehensive review of the use of P2 receptor antagonists for the treatment of pain.

    CAS  Google Scholar 

  166. Honore, P. et al. Analgesic profile of intrathecal P2X3 antisense oligonucleotide treatment in chronic inflammatory and neuropathic pain states in rats. Pain 99, 11–19 (2002).

    CAS  PubMed  Google Scholar 

  167. Dorn, G. et al. siRNA relieves chronic neuropathic pain. Nucleic Acids Res. 32, e49 (2004).

    PubMed  PubMed Central  Google Scholar 

  168. Bardoni, R. et al. ATP P2X receptors mediate fast synaptic transmission in the dorsal horn of the rat spinal cord. J. Neurosci. 17, 5297–5304 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Jo, Y. H. & Schlichter, R. Synaptic corelease of ATP and GABA in cultured spinal neurons. Nature Neurosci. 2, 241–245 (1999).

    CAS  PubMed  Google Scholar 

  170. Tsuda, M. et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424, 778–783 (2003). Seminal paper implicating microglial P2X 4 receptors in neuropathic pain.

    CAS  PubMed  Google Scholar 

  171. McGaraughty, S. & Jarvis, M. F. Purinergic control of neuropathic pain. Drug Dev. Res. 67, 376–388 (2006).

    CAS  Google Scholar 

  172. Inoue, K. P2 receptors and chronic pain. Purinergic Signal. 3, 135–144 (2007). Updated review on P2X 3 , P2X 4 and P2X 7 receptors in neuropathic pain.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Scholz, J. & Woolf, C. J. The neuropathic pain triad: neurons, immune cells and glia. Nature Neurosci. 10, 1361–1368 (2007).

    CAS  PubMed  Google Scholar 

  174. Coull, J. A. et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438, 1017–1021 (2005).

    CAS  PubMed  Google Scholar 

  175. Nasu-Tada, K. et al. Possible involvement of increase in spinal fibronectin following peripheral nerve injury in upregulation of microglial P2X4, a key molecule for mechanical allodynia. Glia 53, 769–775 (2006).

    PubMed  Google Scholar 

  176. Guo, L. H., Guo, K. T., Wendel, H. P. & Schluesener, H. J. Combinations of TLR and NOD2 ligands stimulate rat microglial P2X4R expression. Biochem. Biophys. Res. Commun. 349, 1156–1162 (2006).

    CAS  PubMed  Google Scholar 

  177. Tsuda, M. et al. Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia 45, 89–95 (2004).

    PubMed  Google Scholar 

  178. Morita, K. et al. Development of tactile allodynia and thermal hyperalgesia by intrathecally administered platelet-activating factor in mice. Pain 111, 351–359 (2004).

    CAS  PubMed  Google Scholar 

  179. Inoue, K. ATP receptors of microglia involved in pain, in Novartis Foundation Symposium 276 Purinergic Signalling in Neuron–Glial Interactions 263–274 (John Wiley & Sons Ltd., Chichester, 2006).

    Google Scholar 

  180. Trang, T., Beggs, S. & Salter, M. W. Purinoceptors in microglia and neuropathic pain. Pflugers Arch. 452, 645–652 (2006).

    CAS  PubMed  Google Scholar 

  181. Chessell, I. P. et al. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114, 386–396 (2005). This paper describes the loss of neuropathic pain in P2X 3 receptor knockout mice.

    CAS  PubMed  Google Scholar 

  182. Chessell, I. P. et al. The role of P2X7 and P2X4 in pain processing; common or divergent pathways? Purinergic Signal. 2, 46–47 (2006).

    Google Scholar 

  183. Guo, C., Masin, M., Qureshi, O. S. & Murrell-Lagnado, R. D. Evidence for functional P2X4/P2X7 heteromeric receptors. Mol. Pharmacol. 72, 1447–1456 (2007).

    CAS  PubMed  Google Scholar 

  184. Okada, M., Nakagawa, T., Minami, M. & Satoh, M. Analgesic effects of intrathecal administration of P2Y nucleotide receptor agonists UTP and UDP in normal and neuropathic pain model rats. J. Pharmacol. Exp. Ther. 303, 66–73 (2002).

    CAS  PubMed  Google Scholar 

  185. Ruan, H. Z. & Burnstock, G. Localisation of P2Y1 and P2Y4 receptors in dorsal root, nodose and trigeminal ganglia of the rat. Histochem. Cell Biol. 120, 415–426 (2003).

    CAS  PubMed  Google Scholar 

  186. Gerevich, Z. & Illes, P. P2Y receptors and pain transmission. Purinergic Signal. 1, 3–10 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Selden, N. R. et al. Purinergic actions on neurons that modulate nociception in the rostral ventromedial medulla. Neuroscience 146, 1808–1816 (2007).

    CAS  PubMed  Google Scholar 

  188. Gerevich, Z. et al. Metabotropic P2Y receptors inhibit P2X3 receptor-channels via G protein-dependent facilitation of their desensitization. Br. J. Pharmacol. 151, 226–236 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Nakagawa, T. et al. Intrathecal administration of ATP produces long-lasting allodynia in rats: differential mechanisms in the phase of the induction and maintenance. Neuroscience 147, 445–455 (2007). This study shows that P2X 3 and P2X 2/3 receptor antagonists prevent the induction of tactile allodynia.

    CAS  PubMed  Google Scholar 

  190. Ueno, S. et al. Involvement of P2X2 and P2X3 receptors in neuropathic pain in a mouse model of chronic constriction injury. Drug Dev. Res. 59, 104–111 (2003).

    CAS  Google Scholar 

  191. Tsuda, M., Hasegawa, S. & Inoue, K. P2X receptor-mediated cytosolic phospholipase A2 activation in primary afferent sensory neurons contributes to neuropathic pain. J. Neurochem. 103, 1408–1416 (2007).

    CAS  PubMed  Google Scholar 

  192. Chen, Y. et al. Mechanisms underlying enhanced P2X receptor-mediated responses in the neuropathic pain state. Pain 119, 38–48 (2005).

    CAS  PubMed  Google Scholar 

  193. McGaraughty, S. et al. Endogenous opioid mechanisms partially mediate P2X3/P2X2/3-related antinociception in rat models of inflammatory and chemogenic pain but not neuropathic pain. Br. J. Pharmacol. 146, 180–188 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Wirkner, K., Sperlagh, B. & Illes, P. P2X3 receptor involvement in pain states. Mol. Neurobiol. 36, 165–183 (2007).

    CAS  PubMed  Google Scholar 

  195. Hughes, J. P., Hatcher, J. P. & Chessell, I. P. The role of P2X7 in pain and inflammation. Purinergic Signal. 3, 163–169 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. McGaraughty, S. et al. P2X7-related modulation of pathological nociception in rats. Neuroscience 146, 1817–1828 (2007). The authors of this study used a selective P2X 7 receptor antagonist, A438079, for the treatment of chronic pain.

    CAS  PubMed  Google Scholar 

  197. McQuay, H. J. et al. A systematic review of antidepressants in neuropathic pain. Pain 68, 217–227 (1996).

    CAS  PubMed  Google Scholar 

  198. Pedrazza, E. L. et al. Sertraline and clomipramine inhibit nucleotide catabolism in rat brain synaptosomes. Toxicol. In Vitro 21, 671–676 (2007).

    CAS  PubMed  Google Scholar 

  199. Akkari, R., Burbiel, J. C., Hockemeyer, J. & Müller, C. E. Recent progress in the development of adenosine receptor ligands as antiinflammatory drugs. Curr. Top. Med. Chem. 6, 1375–1399 (2006).

    CAS  PubMed  Google Scholar 

  200. Burnstock, G. The role of adenosine triphosphate in migraine. Biomed. Pharmacother. 43, 727–736 (1989).

    CAS  PubMed  Google Scholar 

  201. Ambalavanar, R., Moritani, M. & Dessem, D. Trigeminal P2X3 receptor expression differs from dorsal root ganglion and is modulated by deep tissue inflammation. Pain 117, 280–291 (2005).

    CAS  PubMed  Google Scholar 

  202. Fabbretti, E. et al. Delayed upregulation of ATP P2X3 receptors of trigeminal sensory neurons by calcitonin gene-related peptide. J. Neurosci. 26, 6163–6171 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Chen, C. C. et al. A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377, 428–431 (1995). Seminal paper reporting the cloning of P2X 3 receptors and their localization in nociceptive sensory neurons.

    CAS  PubMed  Google Scholar 

  204. Fumagalli, M., Ceruti, S., Verderio, C. & Abbracchio, M. P. ATP as a neurotransmitter of pain in migraine: a functional role for P2Y receptors in primary cultures from mouse trigeminal sensory ganglia. Purinergic Signal. 2, 120–121 (2006).

    Google Scholar 

  205. D'Arco, M. et al. Neutralization of nerve growth factor induces plasticity of ATP-sensitive P2X3 receptors of nociceptive trigeminal ganglion neurons. J. Neurosci. 27, 8190–8201 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Shapiro, R. E. Caffeine and headaches. Neurol. Sci. 28, S179–S183 (2007).

    PubMed  Google Scholar 

  207. Humphrey, P. P. A. The discovery of a new drug class for the acute treatment of migraine. Headache 47, S10–S19 (2007).

    PubMed  Google Scholar 

  208. Hohoff, C. et al. An adenosine A2A receptor gene haplotype is associated with migraine with aura. Cephalalgia 27, 177–181 (2007).

    CAS  PubMed  Google Scholar 

  209. Gever, J. et al. Pharmacology of P2X channels. Pflugers Arch. 452, 513–537 (2006). Good review of the identification and effectiveness of P2X receptor antagonists, including RO3, a P2X 3 antagonist that is orally bioavailable and stable in vivo.

    CAS  PubMed  Google Scholar 

  210. Wilot, L. C. et al. Lithium and valproate protect hippocampal slices against ATP-induced cell death. Neurochem. Res. 32, 1539–1546 (2007).

    CAS  PubMed  Google Scholar 

  211. Chang, G., Chen, L. & Mao, J. Opioid tolerance and hyperalgesia. Med. Clin. North Am. 91, 199–211 (2007).

    CAS  PubMed  Google Scholar 

  212. Ho, B. T. et al. Analgesic activity of anticancer agent suramin. Anticancer Drugs 3, 91–94 (1992).

    CAS  PubMed  Google Scholar 

  213. Fellin, T. et al. Bidirectional astrocyte-neuron communication: the many roles of glutamate and ATP, in Novartis Foundation Symposium 276 Purinergic Signalling in Neuron–Glial Interactions 208–221 (John Wiley & Sons Ltd., Chichester, 2006).

    Google Scholar 

  214. Patti, L. et al. P2X7 receptors exert a permissive role on the activation of release-enhancing presynaptic α7 nicotinic receptors co-existing on rat neocortex glutamatergic terminals. Neuropharmacology 50, 705–713 (2006).

    CAS  PubMed  Google Scholar 

  215. Rodrigues, R. J. et al. Dual presynaptic control by ATP of glutamate release via facilitatory P2X1, P2X2/3, and P2X3 and inhibitory P2Y1, P2Y 2, and/or P2Y4 receptors in the rat hippocampus. J. Neurosci. 25, 6286–6295 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Pankratov, Y., Lalo, U., Verkhratsky, A. & North, R. A. Vesicular release of ATP at central synapses. Pflugers Arch. 452, 589–597 (2006).

    CAS  PubMed  Google Scholar 

  217. Bodin, P. & Burnstock, G. Purinergic signalling: ATP release. Neurochem. Res. 26, 959–969 (2001).

    CAS  PubMed  Google Scholar 

  218. Montana, V. et al. Vesicular transmitter release from astrocytes. Glia 54, 700–715 (2006).

    PubMed  Google Scholar 

  219. Zhang, Z. et al. Regulated ATP release from astrocytes through lysosome exocytosis. Nature Cell Biol. 9, 945–953 (2007). An original paper describing release of ATP from astrocytes via lysosome exocytosis.

    CAS  PubMed  Google Scholar 

  220. Stout, C. E., Costantin, J. L., Naus, C. C. & Charles, A. C. Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J. Biol. Chem. 277, 10482–10488 (2002).

    CAS  PubMed  Google Scholar 

  221. Wall, M. J. & Dale, N. Auto-inhibition of rat parallel fibre-Purkinje cell synapses by activity-dependent adenosine release. J. Physiol. 581, 553–565 (2007).

    PubMed  PubMed Central  Google Scholar 

  222. Martín, E. D. et al. Adenosine released by astrocytes contributes to hypoxia-induced modulation of synaptic transmission. Glia 55, 36–45 (2007).

    PubMed  Google Scholar 

  223. Zimmermann, H. et al. Ecto-nucleotidases, molecular properties and functional impact. An. R. Acad. Nac. Farm. 73, 537–566 (2007). An excellent update of knowledge of ecto-nucleotidases.

    CAS  Google Scholar 

  224. Burnstock, G. & Wood, J. N. Purinergic receptors: their role in nociception and primary afferent neurotransmission. Curr. Opin. Neurobiol. 6, 526–532 (1996).

    CAS  PubMed  Google Scholar 

  225. Sperlágh, B., Zsilla, G., Baranyi, M., Illes, P. & Vizi, E. S. Purinergic modulation of glutamate release under ischemic-like conditions in the hippocampus. Neuroscience 149, 99–111 (2007).

    PubMed  Google Scholar 

  226. Ribeiro, J. A., Sebastião, A. M. & de Mendonça, A. Adenosine receptors in the nervous system: pathophysiological implications. Prog. Neurobiol. 68, 377–392 (2003).

    Google Scholar 

  227. Braganhol, E., Tamajusuku, A. S., Bernardi, A., Wink, M. R. & Battastini, A. M. Ecto-5′-nucleotidase/CD73 inhibition by quercetin in the human U138MG glioma cell line. Biochim. Biophys. Acta 1770, 1352–1359 (2007).

    CAS  PubMed  Google Scholar 

  228. Synowitz, M. et al. A1 adenosine receptors in microglia control glioblastoma-host interaction. Cancer Res. 66, 8550–8557 (2006).

    CAS  PubMed  Google Scholar 

  229. Vianna, E. P., Ferreira, A. T., Doná, F., Cavalheiro, E. A. & da Silva Fernandes, M. J. Modulation of seizures and synaptic plasticity by adenosinergic receptors in an experimental model of temporal lobe epilepsy induced by pilocarpine in rats. Epilepsia 46, 166–173 (2005).

    CAS  PubMed  Google Scholar 

  230. Hosseinmardi, N., Mirnajafi-Zadeh, J., Fathollahi, Y. & Shahabi, P. The role of adenosine A1 and A2A receptors of entorhinal cortex on piriform cortex kindled seizures in rats. Pharmacol. Res. 56, 110–117 (2007).

    CAS  PubMed  Google Scholar 

  231. Liu, H. Q., Zhang, W. Y., Luo, X. T., Ye, Y. & Zhu, X. Z. Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson's disease by activation of adenosine A1 receptor. Br. J. Pharmacol. 148, 314–325 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Rathbone, M. P. et al. Trophic effects of purines in neurons and glial cells. Prog. Neurobiol. 59, 663–690 (1999).

    CAS  PubMed  Google Scholar 

  233. Reece, T. B. et al. Adenosine A2A analogue reduces long-term neurologic injury after blunt spinal trauma. J. Surg. Res. 121, 130–134 (2004).

    CAS  PubMed  Google Scholar 

  234. Mojsilovic-Petrovic, J. et al. Protecting motor neurons from toxic insult by antagonism of adenosine A2a and Trk receptors. J. Neurosci. 26, 9250–9263 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Fuxe, K., Ferre, S., Genedani, S., Franco, R. & Agnati, L. F. Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol. Behav. 92, 210–217 (2007).

    CAS  PubMed  Google Scholar 

  236. O'Neill, M. & Brown, V. J. The effect of the adenosine A2A antagonist KW-6002 on motor and motivational processes in the rat. Psychopharmacology (Berl) 184, 46–55 (2006).

    CAS  Google Scholar 

  237. Shields, C. B. et al. Treatment of spinal cord injury via topical perfusion with an ATP solution. Society for Neuroscience, Washington, DC. Abstr. 418, 8 (2004).

    Google Scholar 

  238. Cakir, E., Baykal, S., Karahan, S. C., Kuzeyli, K. & Uydu, H. Acute phase effects of ATP-MgCl2 on experimental spinal cord injury. Neurosurg. Rev. 26, 67–70 (2003).

    PubMed  Google Scholar 

  239. Kim, D. S., Kwak, S. E., Kim, J. E., Won, M. H. & Kang, T. C. The co-treatments of vigabatrin and P2X receptor antagonists protect ischemic neuronal cell death in the gerbil hippocampus. Brain Res. 1120, 151–160 (2006).

    CAS  PubMed  Google Scholar 

  240. Lin, Y., Desbois, A., Jiang, S. & Hou, S. T. P2 receptor antagonist PPADS confers neuroprotection against glutamate/NMDA toxicity. Neurosci. Lett. 377, 97–100 (2005).

    CAS  PubMed  Google Scholar 

  241. Wang, Y. et al. Diadenosine tetraphosphate protects against injuries induced by ischemia and 6-hydroxydopamine in rat brain. J. Neurosci. 23, 7958–7965 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Morrone, F. B. et al. In vivo glioblastoma growth is reduced by apyrase activity in a rat glioma model. BMC Cancer 6, 226 (2006).

    PubMed  PubMed Central  Google Scholar 

  243. Waeber, C. & Moskowitz, M. A. Therapeutic implications of central and peripheral neurologic mechanisms in migraine. Neurology 61, S9–20 (2003).

    PubMed  Google Scholar 

  244. Dell'Antonio, G., Quattrini, A., Cin, E. D., Fulgenzi, A. & Ferrero, M. E. Relief of inflammatory pain in rats by local use of the selective P2X7 ATP receptor inhibitor, oxidized ATP. Arthritis Rheum. 46, 3378–3385 (2002).

    CAS  PubMed  Google Scholar 

  245. Witting, A., Walter, L., Wacker, J., Moller, T. & Stella, N. P2X7 receptors control 2-arachidonoylglycerol production by microglial cells. Proc. Natl Acad. Sci. USA. 101, 3214–3219 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Honore, P. et al. A-740003 [N-(1-{[(cyanoimino)(5-quinolinylamino) methyl]amino}-2, 2-dimethylpropyl)-2-(3, 4-dimethoxyphenyl)acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat. J. Pharmacol. Exp. Ther. 319, 1376–1385 (2006).

    CAS  PubMed  Google Scholar 

  247. Donnelly-Roberts, D. L. & Jarvis, M. F. Discovery of P2X7 receptor-selective antagonists offers new insights into P2X7 receptor function and indicates a role in chronic pain states. Br. J. Pharmacol. 151, 571–579 (2007). Updated review of the use of P2X 7 receptor antagonists against chronic pain.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank G. E. Knight for her excellent editorial assistance.

Author information

Authors and Affiliations

Authors

Supplementary information

Supplementary information S1 (figure)

Microglia activation by ATP (PDF 190 kb)

Supplementary information S2 (table)

Functional pharmacological evaluation of P2X7 antagonists (PDF 105 kb)

Supplementary information S3 (box)

Abbreviations for tables 2 and 3 (PDF 122 kb)

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

amyotrophic lateral sclerosis

Huntington's disease

multiple sclerosis

Parkinson's disease

FURTHER INFORMATION

Geoffrey Burnstock's homepage

Glossary

Taenia coli

The three separate longitudinal ribbons of smooth muscle on the outside of the ascending transverse, descending and sigmoid colons.

Cortical spreading depression

A short lasting wave of depolarization that spreads through the cerebral cortex.

Hypercapnia

Abnormally high levels of carbon dioxide in the blood.

Genetic absence epilepsy

A type of epilepsy with non-convulsive seizures.

Panic disorder

An anxiety disorder characterized by recurrent inappropriate and sudden attacks of fear.

Reactive hyperaemia

A transient increase in blood flow following ischaemia.

Cerebral vascular vasospasm

A sudden constriction of blood vessels in the brain.

Algogenic stimuli

A pain-producing stimuli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burnstock, G. Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7, 575–590 (2008). https://doi.org/10.1038/nrd2605

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2605

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing