Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Genetic links between brain development and brain evolution

Abstract

The most defining biological attribute of Homo sapiens is its enormous brain size and accompanying cognitive prowess. How this was achieved by means of genetic changes over the course of human evolution has fascinated biologists and the general public alike. Recent studies have shown that genes controlling brain development — notably those implicated in microcephaly (a congenital defect that is characterized by severely reduced brain size) — are favoured targets of natural selection during human evolution. We propose that genes that regulate brain size during development, such as microcephaly genes, are chief contributors in driving the evolutionary enlargement of the human brain. Based on the synthesis of recent studies, we propose a general methodological template for the genetic analysis of human evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Values of the encephalization quotient (EQ) for representative primates and hominids.
Figure 2: Brain magnetic resonance images.
Figure 3: Molecular evolution of ASPM and MCPH1 in primates.
Figure 4: A methodological template for investigating the genetic basis of human brain evolution.

Similar content being viewed by others

References

  1. Jerison, J. H. Evolution of the Brain and Intelligence (Academic Press, New York, 1973).

    Google Scholar 

  2. Spuhler, J. N. The Evolution of Man's Capacity for Culture (Wayne State Univ. Press, Detroit, 1959).

    Google Scholar 

  3. Olson, M. V. & Varki, A. Sequencing the chimpanzee genome: insights into human evolution and disease. Nature Rev. Genet. 4, 20–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Carroll, S. B. Genetics and the making of Homo sapiens. Nature 422, 849–857 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Noback, C. R. & Montagna, W. The Primate Brain (Meredith Corporation, New York, 1970).

    Google Scholar 

  6. Armstrong, E. & Falk, D. Primate Brain Evolution: Methods and Concepts (Plenum, New York, 1982).

    Book  Google Scholar 

  7. Matsuzawa, T. Primate Origins of Human Cognition and Behavior (Springer, Tokyo, 2001).

    Book  Google Scholar 

  8. Jacobs, G. H., Neitz, M., Deegan, J. F. & Neitz, J. Trichromatic colour vision in New World monkeys. Nature 382, 156–158 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Enard, W. et al. Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418, 869–872 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Choi, S. S. & Lahn, B. T. Adaptive evolution of MRG, a neuron-specific gene family implicated in nociception. Genome Res. 13, 2252–2259 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shi, P., Zhang, J., Yang, H. & Zhang, Y. P. Adaptive diversification of bitter taste receptor genes in mammalian evolution. Mol. Biol. Evol. 20, 805–814 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Mundy, N. I. & Cook, S. Positive selection during the diversification of class I vomeronasal receptor-like (V1RL) genes, putative pheromone receptor genes, in human and primate evolution. Mol. Biol. Evol. 20, 1805–1810 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, J. Evolution of the human ASPM gene, a major determinant of brain size. Genetics 165, 2063–2070 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Evans, P. D. et al. Adaptive evolution of ASPM, a major determinant of cerebral cortical size in humans. Hum. Mol. Genet. 13, 489–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Kouprina, N. et al. Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion. PLoS Biol. 2, e126 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang, Y. Q. & Su, B. Molecular evolution of microcephalin, a gene determining human brain size. Hum. Mol. Genet. 13, 1131–1137 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Evans, P. D., Anderson, J. R., Vallender, E. J., Choi, S. S. & Lahn, B. T. Reconstructing the evolutionary history of microcephalin, a gene controlling human brain size. Hum. Mol. Genet. 13, 1139–1145 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Gilad, Y., Wiebe, V., Przeworski, M., Lancet, D. & Paabo, S. Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biol. 2, e5 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ferland, R. J. et al. Abnormal cerebellar development and axonal decussation due to mutations in AHI1 in Joubert syndrome. Nature Genet. 36, 1008–1013 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Dorus, S. et al. Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell 119, 1027–1040 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Stedman, H. H. et al. Myosin gene mutation correlates with anatomical changes in the human lineage. Nature 428, 415–418 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Mochida, G. H. & Walsh, C. A. Molecular genetics of human microcephaly. Curr. Opin. Neurol. 14, 151–156 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Dobyns, W. B. Primary microcephaly: new approaches for an old disorder. Am. J. Hum. Genet. 112, 315–317 (2002).

    Article  Google Scholar 

  24. Komai, T., Kishimoto, K. & Ozaki, Y. Genetic study of microcephaly based on Japanese material. Am. J. Hum. Genet. 47, 51–65 (1955).

    Google Scholar 

  25. Tramo, M. J. et al. Brain size, head size, and intelligence quotient in monozygotic twins. Neurology 50, 1246–1252 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Thompson, P. M. et al. Genetic influences on brain structure. Nature Neurosci. 4, 1253–1258 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Bouchard, T. J. Jr. Genes, environment, and personality. Science 264, 1700–1701 (1994).

    Article  PubMed  Google Scholar 

  28. Plomin, R., Owen, M. J. & McGuffin, P. The genetic basis of complex human behaviors. Science 264, 1733–1739 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Plomin, R., DeFries, J. C., McClearn, G. E. & Rutter, M. Behavioral Genetics (W. H. Freeman, New York, 1997).

    Google Scholar 

  30. Bouchard, T. J. Jr & McGue, M. Genetic and environmental influences on human psychological differences. J. Neurobiol. 54, 4–45 (2003).

    Article  PubMed  Google Scholar 

  31. Rushton, J. P. & Ankney, C. D. Brain size and cognitive ability: correlations with age, sex, social class, and race. Psychon. Bull. Rev. 3, 21–36 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Vernon, P. A., Wickett, J. C., Bazana, P. G. & Stelmack, R. M. in Handbook of Intelligence (ed. Sternberg, R. J.) 245–264 (Cambridge Univ. Press, Cambridge, UK, 2000).

    Book  Google Scholar 

  33. Posthuma, D. et al. The association between brain volume and intelligence is of genetic origin. Nature Neurosci. 5, 83–84 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Gray, J. R. & Thompson, P. M. Neurobiology of intelligence: science and ethics. Nature Rev. Neurosci. 5, 471–482 (2004).

    Article  CAS  Google Scholar 

  35. Schoenemann, P. T., Budinger, T. F., Sarich, V. M. & Wang, W. S. Brain size does not predict general cognitive ability within families. Proc. Natl Acad. Sci. USA 97, 4932–4937 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Williams, M. F. Primate encephalization and intelligence. Med. Hypotheses 58, 284–290 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. McHenry, H. M. Tempo and mode in human evolution. Proc. Natl Acad. Sci. USA 91, 6780–6786 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aschoff, J., Gunther, B. & Kramer, K. Energiehaushalt und Temperatureregulation (Urban and Schwarzenberg, Munich, 1971).

    Google Scholar 

  39. Armstrong, E. Brains, bodies and metabolism. Brain Behav. Evol. 36, 166–176 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Aiello, L. C. & Wheeler, P. The expensive tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr. Anthropol. 36, 199–221 (1995).

    Article  Google Scholar 

  41. Smith, B. H. The cost of a large brain. Behav. Brain Res. 13, 365–366 (1990).

    Google Scholar 

  42. Loudon, I. Maternal mortality in the past and its relevance to developing countries today. Am. J. Clin. Nutr. 72, 241S–246S (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Rosenberg, K. R. & Trevathan, W. R. The evolution of human birth. Sci. Am. 285, 72–77 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Lovejoy, C. O. in Primate Functional Morphology and Evolution (ed. Tuttle, R. H.) 291–326 (Mouton, The Hague, 1975).

    Book  Google Scholar 

  45. Sacher, G. A. in Primate Brain Evolution: Methods and Concepts (eds Armstrong, E. & Falk, D.) 97–112 (Plenum, New York, 1982).

    Book  Google Scholar 

  46. Harvey, P. H. & Clutton-Brock, T. H. Life history variation in primates. Evolution 39, 559–581 (1985).

    Article  PubMed  Google Scholar 

  47. Martin, R. D. Scaling of the mammalian brain: the maternal energy hypothesis. News Physiol. Sci. 11, 149–156 (1996).

    Google Scholar 

  48. Ohta, T. Slightly deleterious mutant substitutions in evolution. Nature 246, 96–98 (1973).

    Article  CAS  PubMed  Google Scholar 

  49. Enard, W. et al. Intra- and interspecific variation in primate gene expression patterns. Science 296, 340–343 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Caceres, M. et al. Elevated gene expression levels distinguish human from non-human primate brains. Proc. Natl Acad. Sci. USA 100, 13030–13035 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Preuss, T. M., Caceres, M., Oldham, M. C. & Geschwind, D. H. Human brain evolution: insights from microarrays. Nature Rev. Genet. 5, 850–860 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Uddin, M. et al. Sister grouping of chimpanzees and humans as revealed by genome-wide phylogenetic analysis of brain gene expression profiles. Proc. Natl Acad. Sci. USA 101, 2957–2962 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Harris, M. A. et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 32 (Database issue), D258–D261 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Barkovich, A. J. et al. Microlissencephaly: a heterogeneous malformation of cortical development. Neuropediatrics 29, 113–119 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Tolmie, J. L., McNay, M., Stephenson, J. B. P., Doyle, D. & Connor, J. M. Microcephaly: genetic counseling and antenatal diagnosis after the birth of an affected child. Am. J. Med. Genet. 27, 583–594 (1987).

    Article  CAS  PubMed  Google Scholar 

  56. Baraitser, M. The Genetics of Neurological Disorders 456 (Oxford Univ. Press, Oxford, 1997).

    Google Scholar 

  57. Peiffer, A., Singh, N., Leppert, M., Dobyns, W. B. & Carey, J. C. Microcephaly with simplified gyral pattern in six related children. Am. J. Med. Genet. 84, 137–144 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Bond, J. et al. ASPM is a major determinant of cerebral cortical size. Nature Genet. 32, 316–320 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Bond, J. et al. Protein-truncating mutations in ASPM cause variable reduction in brain size. Am. J. Hum. Genet. 73, 1170–1177 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jackson, A. P. et al. Primary autosomal recessive microcephaly (MCPH1) maps to chromosome 8p22-pter. Am. J. Hum. Genet. 63, 541–546 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jackson, A. P. et al. Identification of microcephalin, a protein implicated in determining the size of the human brain. Am. J. Hum. Genet. 71, 136–142 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Trimborn, M. et al. Mutations in microcephalin cause aberrant regulation of chromosome condensation. Am. J. Hum. Genet. 75, 261–266 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cohen, M. M. Jr. Perspectives on holoprosencephaly: Part I. Epidemiology, genetics, and syndromology. Teratology 40, 211–235 (1989).

    Article  PubMed  Google Scholar 

  64. Muenke, M. et al. Linkage of a human brain malformation, familial holoprosencephaly, to chromosome 7 and evidence for genetic heterogeneity. Proc. Natl Acad. Sci. USA 91, 8102–8106 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Roessler, E. et al. Mutations in the human sonic hedgehog gene cause holoprosencephaly. Nature Genet. 14, 357–360 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Roessler, E. et al. Mutations in the C-terminal domain of sonic hedgehog cause holoprosencephaly. Hum. Mol. Genet. 6, 1847–1853 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Dubourg, C. et al. Molecular screening of SHH, ZIC2, SIX3, and TGIF genes in patients with features of holoprosencephaly spectrum: mutation review and genotype–phenotype correlations. Hum. Mutat. 24, 43–51 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Sztriha, L., Al-Gazali, L. I., Varady, E., Goebel, H. H. & Nork, M. Autosomal recessive micrencephaly with simplified gyral pattern, abnormal myelination and arthrogryposis. Neuropediatrics 30, 141–145 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. ten Donkelaar, H. J. Major events in the development of the forebrain. Eur. J. Morphol. 38, 301–308 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Sheen, V. L. et al. Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex. Nature Genet. 36, 69–76 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Sheen, V. L. et al. Autosomal recessive form of periventricular heterotopia. Neurology 60, 1108–1112 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Shanske, A., Caride, D. G., Menasse-Palmer, L., Bogdanow, A. & Marion, R. Central nervous system anomalies in Seckel syndrome: report of a new family and review of the literature. Am. J. Med. Genet. 70, 155–158 (1998).

    Article  Google Scholar 

  73. Goodship, J. et al. Autozygosity mapping of a Seckel syndrome locus to chromosome 3q22.1–q24. Am. J. Hum. Genet. 67, 498–503 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Capovilla, G. et al. Seckel's syndrome and malformations of cortical development: report of three new cases and review of the literature. J. Child. Neurol. 16, 382–386 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. O'Driscoll, M., Ruiz-Perez, V. L., Woods, C. G., Jeggo, P. A. & Goodship, J. A. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nature Genet. 33, 497–501 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Alderton, G. K. et al. Seckel syndrome exhibits cellular features demonstrating defects in the ATR-signalling pathway. Hum. Mol. Genet. 13, 3127–3138 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Kelley, R. I., Robinson, D., Puffenberger, E. G., Strauss, K. A. & Morton, D. H. Amish lethal microcephaly: a new metabolic disorder with severe congenital microcephaly and 2-ketoglutaric aciduria. Am. J. Med. Genet. 112, 318–326 (2002).

    Article  PubMed  Google Scholar 

  78. Rosenberg, M. J. et al. Mutant deoxynucleotide carrier is associated with congenital microcephaly. Nature Genet. 32, 175–179 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Strauss, K. A., Pfanni, R. & Morton, D. H. The neuropathology of Amish lethal microcephaly. Am. J. Hum. Genet. 71, A517 (2002).

    Google Scholar 

  80. Roberts, E. et al. The second locus for autosomal recessive primary microcephaly (MCPH2) maps to chromosome 19q13.1–13.2. Eur. J. Hum. Genet. 7, 815–820 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Moynihan, L. et al. A third novel locus for primary autosomal recessive microcephaly maps to chromosome 9q34. Am. J. Hum. Genet. 66, 724–727 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jamieson, C. R., Govaerts, C. & Abramowicz, M. J. Primary autosomal recessive microcephaly: homozygosity mapping of MCPH4 to chromosome 15. Am. J. Hum. Genet. 65, 1465–1469 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jamieson, C. R., Fryns, J. P., Jacobs, J., Matthijs, G. & Abramowicz, M. J. Primary autosomal recessive microcephaly: MCPH5 maps to 1q25–q32. Am. J. Hum. Genet. 67, 1575–1577 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pattison, L. et al. A fifth locus for primary autosomal recessive microcephaly maps to chromosome 1q31. Am. J. Hum. Genet. 67, 1578–1580 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Leal, G. F. et al. A novel locus for autosomal recessive primary microcephaly (MCPH6) maps to 13q12.2. J. Med. Genet. 40, 540–542 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li, W. H. Molecular Evolution (Sinauer, Sunderland, Massachusetts, 1997).

    Google Scholar 

  87. McDonald, J. H. & Kreitman, M. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351, 652–654 (1991).

    Article  CAS  PubMed  Google Scholar 

  88. Kreitman, M. Methods to detect selection in populations with applications to the human. Annu. Rev. Genomics Hum. Genet. 1, 539–559 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Duret, L. & Mouchiroud, D. Determinants of substitution rates in mammalian genes: expression pattern affects selection intensity but not mutation rate. Mol. Biol. Evol. 17, 68–74 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Ripoll, P., Pimpinelli, S., Valdivia, M. M. & Avila, J. A cell division mutant of Drosophila with a functionally abnormal spindle. Cell 41, 907–912 (1985).

    Article  CAS  PubMed  Google Scholar 

  91. Saunders, R. D., Avides, M. C., Howard, T., Gonzalez, C. & Glover, D. M. The Drosophila gene abnormal spindle encodes a novel microtubule-associated protein that associates with the polar regions of the mitotic spindle. J. Cell. Biol. 137, 881–890 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. do Carmo Avides, M., Tavares, A. & Glover, D. M. Polo kinase and Asp are needed to promote the mitotic organizing activity of centrosomes. Nature Cell Biol. 3, 421–424 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Huyton, T., Bates, P. A., Zhang, X., Sternberg, M. J. & Freemont, P. S. The BRCA1 C-terminal domain: structure and function. Mutat Res 460, 319–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Haldane, J. B. S. The rate of mutation of human genes. Hereditas 35 (Suppl. 1), 267–272 (1949).

    Google Scholar 

  95. Mears, J. G. et al. Sickle gene. Its origin and diffusion from West Africa. J. Clin. Invest. 68, 606–610 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Flint, J. et al. High frequencies of a-thalassaemia are the result of natural selection by malaria. Nature 321, 744–750 (1986).

    Article  CAS  PubMed  Google Scholar 

  97. Lell, B. et al. The role of red blood cell polymorphisms in resistance and susceptibility to malaria. Clin. Infect. Dis. 28, 794–799 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Tishkoff, S. A. et al. Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science 293, 455–462 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Sabeti, P. C. et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Aidoo, M. et al. Protective effects of the sickle cell gene against malaria morbidity and mortality. Lancet 359, 1311–1312 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Ayi, K., Turrini, F., Piga, A. & Arese, P. Enhanced phagocytosis of ring-parasitized mutant erythrocytes: a common mechanism that may explain protection against falciparum malaria in sickle trait and β-thalassemia trait. Blood 104, 3364–3371 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Bauchot, R. Encephalization in vertebrates. A new mode of calculation for allometry coefficients and isoponderal indices. Brain Behav. Evol. 15, 1–18 (1978).

    Article  CAS  PubMed  Google Scholar 

  103. Martin, R. D. Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 293, 57–60 (1981).

    Article  CAS  PubMed  Google Scholar 

  104. Lapicque, L. Sur la relation du poids de l'encéphale au poids du corps. C. R. Seances Soc. Biol. Fil. 50, 62–63 (1898).

    Google Scholar 

  105. Martin, R. D. & Harvey, P. H. in Size and Scaling in Primate Biology (ed. Jungers, W. L.) (Plenum, New York, 1985).

    Google Scholar 

  106. Pilbeam, D. & Gould, S. J. Size and scaling in human evolution. Science 186, 892–901 (1974).

    Article  CAS  PubMed  Google Scholar 

  107. Martin, R. D. Primate Origins and Evolution: a Phylogenetic Reconstruction (Princeton Univ. Press, Princeton, 1990).

    Google Scholar 

  108. Kruska, D. C. On the evolutionary significance of encephalization in some eutherian mammals: effects of adaptive radiation, domestication, and feralization. Brain Behav. Evol. 65, 73–108 (2005).

    Article  PubMed  Google Scholar 

  109. Finlay, B. L., Darlington, R. B. & Nicastro, N. Developmental structure in brain evolution. Behav. Brain Sci. 24, 263–278; discussion 278–308 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Radinsky, L. Early primate brains: facts and fiction. J. Hum. Evol. 6, 79–86 (1977).

    Article  Google Scholar 

  111. Radinsky, L. Aegyptopithecus endocasts: oldest record of a pongid brain. Am. J. Phys. Anthropol. 39, 239–247 (1973).

    Article  CAS  PubMed  Google Scholar 

  112. Gingerich, P. D. Correlation of tooth size and body size in living hominoid primates, with a note on relative brain size in Aegyptopithecus and Proconsul. Am. J. Phys. Anthropol. 47, 395–398 (1977).

    Article  CAS  PubMed  Google Scholar 

  113. Walker, A., Falk, D., Smith, R. & Pickford, M. The skull of Proconsul africanus: reconstruction and cranial capacity. Nature 305, 525–527 (1983).

    Article  Google Scholar 

  114. Kumar, S. & Hedges, S. B. A molecular timescale for vertebrate evolution. Nature 392, 917–920 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Murphy, W. J. et al. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294, 2348–2351 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Page, S. L. & Goodman, M. Catarrhine phylogeny: noncoding DNA evidence for a diphyletic origin of the mangabeys and for a human–chimpanzee clade. Mol. Phylogenet. Evol. 18, 14–25 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Poux, C. & Douzery, E. J. Primate phylogeny, evolutionary rate variations, and divergence times: a contribution from the nuclear gene IRBP. Am. J. Phys. Anthropol. 124, 1–16 (2004).

    Article  PubMed  Google Scholar 

  118. Springer, M. S., Murphy, W. J., Eizirik, E. & O'Brien, S. J. Placental mammal diversification and the Cretaceous–Tertiary boundary. Proc. Natl Acad. Sci. USA 100, 1056–1061 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Evans, N. Mekel-Bobrov, S. Dorus, R.D. Martin, N.M. Pearson, J.P. Rushton, P.T. Schoenemann, E.J. Vallender, and two anonymous reviewers for stimulating discussions and/or critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce T. Lahn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

ARFGEF2

ASPM

ATR

BRCA1

BRCT domain

MCPH1

SHH

SLC25A19

OMIM

Seckel syndrome

FURTHER INFORMATION

Gene Ontology

The Lahn Laboratory web site

William Dobyns web site

Glossary

ARTIODACTYLS

These are even-toed ungulates (hoofed mamals).

ATAVISM

The reappearance in an organism of characteristics that are present in the organism's remote ancestors.

BROCA'S AND WERNICKE'S SPEECH AREAS

The cortical regions of the brain that are primarily involved in speech. Broca's area is located in the left frontal lobe, and is required for the production of language. Wernicke's area is located in the left temporal lobe, and mediates the understanding of language.

EFFECTIVE POPULATION SIZE

The size of an idealized population that is stable over time and practises random mating. This size, denoted as Ne, is typically much smaller than the real population size, denoted as N, because individuals in a population do not choose mates at random.

FRONTAL LOBES

The front portion of the brain to which functions such as movement, speech, reasoning, planning, emotions and problem solving map.

GENE ONTOLOGY

A database that classifies genes into functional categories.

HOMINID

A family of bipedal primates that includes humans and related fossil species that post-date the human–chimpanzee divergence.

HYPOTONIA

An abnormal decrease in passive resistance to movement (muscle tone) in the extremities. Hypotonia is typically associated with poor head control and loosely extended arms and legs. It is indicative of diseases of the central nervous system or muscle.

OCCIPITOFRONTAL CIRCUMFERENCE

A measurement of the circumference of the head around the most posterior aspect of the skull (the occiput) to the most anterior portion of the frontal bone (the forehead). It is used to monitor brain growth by comparing the measurement with standard graphs of the expected head size for a given set of ages.

PANCYTOPENIA

A shortage of all types of blood cell, including red and white blood cells, as well as platelets.

PERISSODACTYLS

These are odd-toed ungulates.

PERIVENTRICULAR NODULAR HETEROTOPIA

In the brain, nodules comprising nerve cells and supporting cells (glia) that are abnormally located along the walls of the lateral ventricles. The cells should have migrated from the ventricular wall up to the cortex during embryonic development, but failed to do so.

SENSORIMOTOR CORTEX

The part of cerebral cortex that is directly concerned with movement of the body and perception of stimuli (especially related to touch, pressure, temperature and pain).

SIMIANS

A suborder of primates that contains apes (including humans), Old World monkeys and New World monkeys. Simians are also known as anthropoids or higher primates. The other suborder of primates, prosimians (also known as lower primates), is characterized by more primitive features. Prosimians are considered to be basal to simians.

SPASTICITY

An abnormal increase in muscle tone, which might be associated with loss of strength and coordination in voluntary movement. It is a common complication of cerebral palsy, spinal-cord injuries, stroke and some developmental defects of the central nervous system.

2-KETOGLUTARIC ACIDURIA

A disorder of the metabolism whereby elevated concentrations of 2-ketoglutaric acid, a naturally occurring chemical formed as a part of the tricarboxylic acid cycle, are excreted in urine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, S., Dobyns, W. & Lahn, B. Genetic links between brain development and brain evolution. Nat Rev Genet 6, 581–590 (2005). https://doi.org/10.1038/nrg1634

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1634

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing