Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Pointing in the right direction: new developments in the field of planar cell polarity

Abstract

Planar cell polarity (PCP) is observed in an array of developmental processes that involve collective cell movement and tissue organization, and its disruption can lead to severe developmental defects. Recent studies in flies and vertebrates have identified new functions for PCP as well as new signalling components, and have proposed new mechanistic models. However, despite this progress, the search to simplify principles of understanding continues and important mechanistic uncertainties still pose formidable challenges.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A model of the PCP signalling mechanism based on work in Drosophila.
Figure 2: Reorganization of PCP in the pupal fly wing.
Figure 3: Development of ependymal PCP during mouse brain development.

Similar content being viewed by others

References

  1. Simons, M. & Mlodzik, M. Planar cell polarity signaling: from fly development to human disease. Annu. Rev. Genet. 42, 517–540 (2008).

    Article  CAS  Google Scholar 

  2. Vladar, E. K., Antic, D. & Axelrod, J. D. Planar cell polarity signaling: the developing cell's compass. Cold Spring Harb. Perspect. Biol. 1, a002964 (2009).

    Article  Google Scholar 

  3. Wallingford, J. B. & Mitchell, B. Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia. Genes Dev. 25, 201–213 (2011).

    Article  CAS  Google Scholar 

  4. Tree, D. R., Ma, D. & Axelrod, J. D. A three-tiered mechanism for regulation of planar cell polarity. Semin. Cell Dev. Biol. 13, 217–224 (2002).

    Article  CAS  Google Scholar 

  5. Zallen, J. A. Planar polarity and tissue morphogenesis. Cell 129, 1051–1063 (2007).

    Article  CAS  Google Scholar 

  6. Axelrod, J. D. Progress and challenges in understanding planar cell polarity signaling. Semin. Cell Dev. Biol. 20, 964–971 (2009).

    Article  CAS  Google Scholar 

  7. Adler, P. N. Planar signaling and morphogenesis in Drosophila. Dev. Cell 2, 525–535 (2002).

    Article  CAS  Google Scholar 

  8. Matakatsu, H. & Blair, S. S. Interactions between Fat and Dachsous and the regulation of planar cell polarity in the Drosophila wing. Development 131, 3785–3794 (2004).

    Article  CAS  Google Scholar 

  9. Simon, M. A. Planar cell polarity in the Drosophila eye is directed by graded Four-jointed and Dachsous expression. Development 131, 6175–6184 (2004).

    Article  CAS  Google Scholar 

  10. Lawrence, P. A., Struhl, G. & Casal, J. Planar cell polarity: one or two pathways? Nature Rev. Genet. 8, 555–563 (2007).

    Article  CAS  Google Scholar 

  11. Classen, A.-K., Anderson, K. I., Marois, E. & Eaton, S. Hexagonal packing of Drosophila wing epithelial cells by the planar cell polarity pathway. Dev. Cell 9, 805–817 (2005).

    Article  CAS  Google Scholar 

  12. Aigouy, B. et al. Cell flow reorients the axis of planar polarity in the wing epithelium of Drosophila. Cell 142, 773–786 (2010).

    Article  CAS  Google Scholar 

  13. Zhu, H. Is anisotropic propagation of polarized molecular distribution the common mechanism of swirling patterns of planar cell polarization? J. Theor. Biol. 256, 315–325 (2009).

    Article  CAS  Google Scholar 

  14. Burak, Y. & Shraiman, B. I. Order and stochastic dynamics in Drosophila planar cell polarity. PLoS Comput. Biol. 5, e1000628 (2009).

    Article  Google Scholar 

  15. Schamberg, S., Houston, P., Monk, N. A. & Owen, M. R. Modelling and analysis of planar cell polarity. Bull. Math. Biol. 72, 645–680 (2010).

    Article  CAS  Google Scholar 

  16. Wang, Y., Badea, T. & Nathans, J. Order from disorder: self-organization in mammalian hair patterning. Proc. Natl Acad. Sci. USA 103, 19800–19805 (2006).

    Article  CAS  Google Scholar 

  17. Shimada, Y., Yonemura, S., Ohkura, H., Strutt, D. & Uemura, T. Polarized transport of Frizzled along the planar microtubule arrays in Drosophila wing epithelium. Dev. Cell 10, 209–222 (2006).

    Article  CAS  Google Scholar 

  18. Repiso, A., Saavedra, P., Casal, J. & Lawrence, P. A. Planar cell polarity: the orientation of larval denticles in Drosophila appears to depend on gradients of Dachsous and Fat. Development 137, 3411–3415 (2010).

    Article  CAS  Google Scholar 

  19. Casal, J., Struhl, G. & Lawrence, P. Developmental compartments and planar polarity in Drosophila. Curr. Biol. 12, 1189–1198 (2002).

    Article  CAS  Google Scholar 

  20. Yang, C., Axelrod, J. D. & Simon, M. A. Regulation of frizzled by fat-like cadherins during planar polarity signaling in the Drosophila compound eye. Cell 108, 675–688 (2002).

    Article  CAS  Google Scholar 

  21. Ma, D., Yang, C. H., McNeill, H., Simon, M. A. & Axelrod, J. D. Fidelity in planar cell polarity signalling. Nature 421, 543–547 (2003).

    Article  CAS  Google Scholar 

  22. Zeidler, M. P., Perrimon, N. & Strutt, D. I. Multiple roles for four-jointed in planar polarity and limb patterning. Dev. Biol. 228, 181–196 (2000).

    Article  CAS  Google Scholar 

  23. Harumoto, T. et al. Atypical cadherins Dachsous and Fat control dynamics of noncentrosomal microtubules in planar cell polarity. Dev. Cell 19, 389–401 (2010).

    Article  CAS  Google Scholar 

  24. Keller, R. & Tibbetts, P. Mediolateral cell intercalation in the dorsal, axial mesoderm of Xenopus laevis. Dev. Biol. 131, 539–549 (1989).

    Article  CAS  Google Scholar 

  25. Keller, R. E., Danilchik, M., Gimlich, R. & Shih, J. The function and mechanism of convergent extension during gastrulation of Xenopus laevis. J. Embryol. Exp. Morphol. 89, S185–S209 (1985).

    Google Scholar 

  26. Wallingford, J. B. et al. Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405, 81–85 (2000).

    Article  CAS  Google Scholar 

  27. Rida, P. C. & Chen, P. Line up and listen: planar cell polarity regulation in the mammalian inner ear. Semin. Cell Dev. Biol. 20, 978–985 (2009).

    Article  CAS  Google Scholar 

  28. Yin, C., Kiskowski, M., Pouille, P. A., Farge, E. & Solnica-Krezel, L. Cooperation of polarized cell intercalations drives convergence and extension of presomitic mesoderm during zebrafish gastrulation. J. Cell Biol. 180, 221–232 (2008).

    Article  CAS  Google Scholar 

  29. Ciruna, B., Jenny, A., Lee, D., Mlodzik, M. & Schier, A. F. Planar cell polarity signalling couples cell division and morphogenesis during neurulation. Nature 439, 220–224 (2006).

    Article  CAS  Google Scholar 

  30. Guo, N., Hawkins, C. & Nathans, J. Frizzled6 controls hair patterning in mice. Proc. Natl Acad. Sci. USA 101, 9277–9281 (2004).

    Article  CAS  Google Scholar 

  31. Devenport, D. & Fuchs, E. Planar polarization in embryonic epidermis orchestrates global asymmetric morphogenesis of hair follicles. Nature Cell Biol. 10, 1257–1268 (2008).

    Article  CAS  Google Scholar 

  32. Martin, P. & Parkhurst, S. M. Parallels between tissue repair and embryo morphogenesis. Development 131, 3021–3034 (2004).

    Article  CAS  Google Scholar 

  33. Caddy, J. et al. Epidermal wound repair is regulated by the planar cell polarity signaling pathway. Dev. Cell 19, 138–147 (2010).

    Article  CAS  Google Scholar 

  34. Lu, X. et al. PTK7/CCK-4 is a novel regulator of planar cell polarity in vertebrates. Nature 430, 93–98 (2004).

    Article  CAS  Google Scholar 

  35. Mace, K. A., Pearson, J. C. & McGinnis, W. An epidermal barrier wound repair pathway in Drosophila is mediated by grainy head. Science 308, 381–385 (2005).

    Article  CAS  Google Scholar 

  36. Ting, S. B. et al. A homolog of Drosophila grainy head is essential for epidermal integrity in mice. Science 308, 411–413 (2005).

    Article  CAS  Google Scholar 

  37. Petrie, R. J., Doyle, A. D. & Yamada, K. M. Random versus directionally persistent cell migration. Nature Rev. Mol. Cell Biol. 10, 538–549 (2009).

    Article  CAS  Google Scholar 

  38. Habas, R., Kato, Y. & He, X. Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 107, 843–854 (2001).

    Article  CAS  Google Scholar 

  39. Strutt, D. I., Weber, U. & Mlodzik, M. The role of RhoA in tissue polarity and Frizzled signalling. Nature 387, 292–295 (1997).

    Article  CAS  Google Scholar 

  40. Lee, H. & Adler, P. N. The grainy head transcription factor is essential for the function of the frizzled pathway in the Drosophila wing. Mech. Dev. 121, 37–49 (2004).

    Article  CAS  Google Scholar 

  41. Ting, S. B. et al. Inositol- and folate-resistant neural tube defects in mice lacking the epithelial-specific factor Grhl-3. Nature Med. 9, 1513–1519 (2003).

    Article  CAS  Google Scholar 

  42. Auden, A. et al. Spatial and temporal expression of the Grainyhead-like transcription factor family during murine development. Gene Expr. Patterns 6, 964–970 (2006).

    Article  CAS  Google Scholar 

  43. Collier, S., Lee, H., Burgess, R. & Adler, P. The WD40 repeat protein fritz links cytoskeletal planar polarity to frizzled subcellular localization in the Drosophila epidermis. Genetics 169, 2035–2045 (2005).

    Article  CAS  Google Scholar 

  44. Kim, S. K. et al. Planar cell polarity acts through septins to control collective cell movement and ciliogenesis. Science 329, 1337–1340 (2010).

    Article  CAS  Google Scholar 

  45. Tooley, A. J. et al. Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility. Nature Cell Biol. 11, 17–26 (2009).

    Article  CAS  Google Scholar 

  46. Tanaka-Takiguchi, Y., Kinoshita, M. & Takiguchi, K. Septin-mediated uniform bracing of phospholipid membranes. Curr. Biol. 19, 140–145 (2009).

    Article  CAS  Google Scholar 

  47. Gray, R. S. et al. The planar cell polarity effector Fuz is essential for targeted membrane trafficking, ciliogenesis and mouse embryonic development. Nature Cell Biol. 11, 1225–1232 (2009).

    Article  CAS  Google Scholar 

  48. Park, T. J., Haigo, S. L. & Wallingford, J. B. Ciliogenesis defects in embryos lacking inturned or fuzzy function are associated with failure of planar cell polarity and Hedgehog signaling. Nature Genet. 38, 303–311 (2006).

    Article  CAS  Google Scholar 

  49. Hu, Q. et al. A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 329, 436–439 (2010).

    Article  CAS  Google Scholar 

  50. May-Simera, H. L. et al. Bbs8, together with the planar cell polarity protein Vangl2, is required to establish left-right asymmetry in zebrafish. Dev. Biol. 345, 215–225 (2010).

    Article  CAS  Google Scholar 

  51. Ross, A. J. et al. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nature Genet. 37, 1135–1140 (2005).

    Article  CAS  Google Scholar 

  52. Mirzadeh, Z., Han, Y. G., Soriano-Navarro, M., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Cilia organize ependymal planar polarity. J. Neurosci. 30, 2600–2610 (2010).

    Article  CAS  Google Scholar 

  53. Park, T. J., Mitchell, B. J., Abitua, P. B., Kintner, C. & Wallingford, J. B. Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nature Genet. 40, 871–879 (2008).

    Article  CAS  Google Scholar 

  54. Guirao, B. et al. Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia. Nature Cell Biol. 12, 341–350 (2010).

    Article  CAS  Google Scholar 

  55. Hirota, Y. et al. Planar polarity of multiciliated ependymal cells involves the anterior migration of basal bodies regulated by non-muscle myosin II. Development 137, 3037–3046 (2010).

    Article  CAS  Google Scholar 

  56. Tissir, F. et al. Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus. Nature Neurosci. 13, 700–707 (2010).

    Article  CAS  Google Scholar 

  57. Hirokawa, N., Tanaka, Y. & Okada, Y. Left-right determination: involvement of molecular motor KIF3, cilia, and nodal flow. Cold Spring Harb. Perspect. Biol. 1, a000802 (2009).

    Article  Google Scholar 

  58. Antic, D. et al. Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis. PLoS ONE 5, e8999 (2010).

    Article  Google Scholar 

  59. Hashimoto, M. et al. Planar polarization of node cells determines the rotational axis of node cilia. Nature Cell Biol. 12, 170–176 (2010).

    Article  CAS  Google Scholar 

  60. Song, H. et al. Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning. Nature 466, 378–382 (2010).

    Article  CAS  Google Scholar 

  61. Baker, K. & Beales, P. L. Making sense of cilia in disease: the human ciliopathies. Am. J. Med. Genet. C Semin. Med. Genet. 151C, 281–95 (2009).

    Article  CAS  Google Scholar 

  62. Lawrence, P. A., Casal, J. & Struhl, G. Cell interactions and planar polarity in the abdominal epidermis of Drosophila. Development 131, 4651–4664 (2004).

    Article  CAS  Google Scholar 

  63. Ishikawa, H. O., Takeuchi, H., Haltiwanger, R. S. & Irvine, K. D. Four-jointed is a Golgi kinase that phosphorylates a subset of cadherin domains. Science 321, 401–404 (2008).

    Article  CAS  Google Scholar 

  64. Simon, M. A., Xu, A., Ishikawa, H. O. & Irvine, K. D. Modulation of fat:dachsous binding by the cadherin domain kinase four-jointed. Curr. Biol. 20, 811–817 (2010).

    Article  CAS  Google Scholar 

  65. Brittle, A. L., Repiso, A., Casal, J., Lawrence, P. A. & Strutt, D. Four-jointed modulates growth and planar polarity by reducing the affinity of dachsous for fat. Curr. Biol. 20, 803–810 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Simon and members of the Axelrod laboratory for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey D. Axelrod.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Jeffrey D. Axelrod's homepage

Glossary

Anisotropic

Having properties that depend on the direction of measurement.

Axoneme

The portion of the cilium projecting into the extracellular space. It is composed of a circular array of nine microtubule doublets plus many other proteins, and is enveloped by a specialized region of plasma membrane.

Basal foot

An appendage protruding asymmetrically from one side of the basal body (centriole) of motile cilia. The direction in which the basal foot points indicates the direction of the active stroke in the ciliary beat cycle.

BBSome

The stable complex of seven Barded–Biedl syndrome proteins involved in trafficking proteins to cilia.

Cell cortex

Region of the cytoplasm lying just interior to the plasma membrane.

Centrosome

An organelle consisting of a pair of centrioles that can nucleate cilia, and pericentriolar material that nucleates and organizes cytoplasmic and spindle microtubules.

Ciliopathies

A large group of diseases and developmental anomalies with overlapping manifestations that result from defects in cilia structure or function.

Ependymal cells

Cells of the ependyma — the epithelial lining of the ventricles of the brain.

Hydrocephalus

The inappropriate accumulation of cerebrospinal fluid in the brain ventricles.

Morphant

An organism treated with an antisense morpholino oligonucleotide resulting in a partial or total loss-of-function mutant.

Nodal cells

Cells in a transient structure at the anterior end of the primitive streak of a mammalian embryo, in which left–right asymmetry is established.

Organ of Corti

The structure in the inner ear that contains receptor cells that are sensitive to sound vibrations.

Rostral

In the direction of the top of the head.

Wing disc

A single-layered, sac-like epithelial structure in the larvae that, in holometabolous insects such as Drosophila melanogaster, gives rise to an adult wing after metamorphosis in the pupal stage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayly, R., Axelrod, J. Pointing in the right direction: new developments in the field of planar cell polarity. Nat Rev Genet 12, 385–391 (2011). https://doi.org/10.1038/nrg2956

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2956

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing