Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organization of vesicular trafficking in epithelia

Key Points

  • At present, our understanding of the mechanisms that control the establishment and maintenance of polarized vesicular-transport routes in epithelial cells can be traced to the introduction of the Madin–Darby canine kidney (MDCK) model system almost three decades ago.

  • Studies in this cell line have identified a multiplicity of sorting signals (hierarchically arranged, with basolateral usually dominant over apical signals) that guide proteins along biosynthetic, endocytic, recycling and transcytotic routes, to and from apical and basolateral membranes.

  • The basolateral sorting mechanisms are better understood owing to the simpler nature of basolateral signals — short peptide motifs that are similar to endocytic motifs — and to the discovery of several potential interacting adaptors that function in this pathway. An epithelial-specific adaptor (AP1B) sorts basolateral proteins in a post-Golgi compartment at the crossroads of the biosynthetic and recycling routes.

  • Recent work indicates that the clustering of small lipid rafts into larger lipid rafts, through protein oligomerization, might be an important determinant of apical targeting.

  • The multiplicity of signals and adaptors probably accounts for the variability in polarized transport routes and in the final localization of proteins at the cell surface in different epithelial cell types (this is known as 'flexible epithelial phenotype').

  • Apical and basolateral routes, which were originally defined by biochemical approaches, are, at present, being more precisely defined by live-cell-imaging experiments using green fluorescent protein (GFP)-tagged apical and basolateral markers.

  • These studies indicate that the junctional area is a 'hot spot' for the delivery of basolateral proteins and of some apical proteins that use the transcytotic route.

  • Live-cell-imaging techniques are facilitating the study of the cytoskeleton and its contribution to polarized trafficking routes. Recent work indicates that the actin and microtubule cytoskeletons cooperate at various levels: first, by organizing the assembly of apical and basolateral vesicular and tubular transporters from intracellular sorting organelles (trans-Golgi network, recycling endosomes); second, by facilitating their transport across the viscous cytoplasm; and third, by organizing the docking and fusion machinery at specific sites in the plasma membrane.

  • Studies in Drosophila melanogaster and Caenorhabditis elegans have identified a number of 'polarity genes' that are responsible for the 'identity' of the apical and basolateral domains. A challenge for the future is to identify trafficking roles for these genes.

Abstract

Experiments using mammalian epithelial cell lines have elucidated biosynthetic and recycling pathways for apical and basolateral plasma-membrane proteins, and have identified components that guide apical and basolateral proteins along these pathways. These components include apical and basolateral sorting signals, adaptors for basolateral signals, and docking and fusion proteins for vesicular trafficking. Recent live-cell-imaging studies provide a real-time view of sorting processes in epithelial cells, including key roles for actin, microtubules and motors in the organization of post-Golgi trafficking.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trafficking routes and sorting mechanisms in epithelial cells.
Figure 2: Machinery that controls polarized vesicular trafficking in epithelial cells.
Figure 3: The exocytic machinery of MDCK cells.
Figure 4: Microtubules organize vesicular trafficking to the apical pole.
Figure 5: PAR1 controls epithelial microtubule organization and lumen morphogenesis.

Similar content being viewed by others

References

  1. Cereijido, M., Contreras, R. G. & Shoshani, L. Cell adhesion, polarity, and epithelia in the dawn of metazoans. Physiol. Rev. 84, 1229–1262 (2004).

    CAS  PubMed  Google Scholar 

  2. Palade, G. E. Intracellular aspects of the process of protein secretion. Science 189, 374–358 (1975).

    Google Scholar 

  3. Farquhar, M. G. & Palade, G. E. Junctional complexes in various epithelia. J. Cell Biol. 17, 375–412 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Cereijido, M., Robbins, E. S., Dolan, W. J., Rotunno, C. A. & Sabatini, D. D. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J. Cell Biol. 77, 853–880 (1978). A landmark paper that characterized the formation of an epithelium in vitro.

    CAS  PubMed  Google Scholar 

  5. Misfeldt, D. S., Hammamoto, S. T. & Pitelka, D. R. Transepithelial transport in cell culture. Proc. Natl Acad. Sci. USA 73, 1212–1216 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rodriguez-Boulan, E. & Sabatini, D. D. Asymmetric budding of viruses in epithelial monolayers: a model system for study of epithelial polarity. Proc. Natl Acad. Sci. USA 75, 5071–5075 (1978). Showed that enveloped viruses can be used as tools to study the generation and maintenance of epithelial polarity.

    CAS  PubMed  Google Scholar 

  7. Rodriguez-Boulan, E. & Pendergast, M. Polarized distribution of viral envelope proteins in the plasma membrane of infected epithelial cells. Cell 20, 45–54 (1980).

    CAS  PubMed  Google Scholar 

  8. Griffiths, G. & Simons, K. The trans Golgi network: sorting at the exit site of the Golgi complex. Science 234, 438–443 (1986).

    CAS  PubMed  Google Scholar 

  9. Matlin, K. S. & Simons, K. Sorting of an apical plasma membrane glycoprotein occurs before it reaches the cell surface in cultured epithelial cells. J. Cell Biol. 99, 2131–2139 (1984).

    CAS  PubMed  Google Scholar 

  10. Misek, D. E., Bard, E. & Rodriguez-Boulan, E. Biogenesis of epithelial cell polarity: intracellular sorting and vectorial exocytosis of an apical plasma membrane glycoprotein. Cell 39, 537–546 (1984).

    CAS  PubMed  Google Scholar 

  11. Rindler, M. J., Ivanov, I. E., Plesken, H., Rodriguez-Boulan, E. & Sabatini, D. D. Viral glycoproteins destined for apical or basolateral plasma membrane domains traverse the same Golgi apparatus during their intracellular transport in doubly infected Madin–Darby canine kidney cells. J. Cell Biol. 98, 1304–1319 (1984).

    CAS  PubMed  Google Scholar 

  12. Rodriguez-Boulan, E. & Nelson, W. J. Morphogenesis of the polarized epithelial cell phenotype. Science 245, 718–725 (1989).

    CAS  PubMed  Google Scholar 

  13. Simons, K. & Wandinger-Ness, A. Polarized sorting in epithelia. Cell 62, 207–210 (1990).

    CAS  PubMed  Google Scholar 

  14. Tuma, P. L. & Hubbard, A. L. Transcytosis: crossing cellular barriers. Physiol. Rev. 83, 871–932 (2003).

    CAS  PubMed  Google Scholar 

  15. Rodriguez-Boulan, E. & Powell, S. K. Polarity of epithelial and neuronal cells. Annu. Rev. Cell Biol. 8, 395–427 (1992).

    CAS  PubMed  Google Scholar 

  16. Matter, K. & Mellman, I. Mechanisms of cell polarity: sorting and transport in epithelial cells. Curr. Opin. Cell Biol. 6, 545–554 (1994).

    CAS  PubMed  Google Scholar 

  17. Yeaman, C., Grindstaff, K. K. & Nelson, W. J. New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol. Rev. 79, 73–98 (1999).

    CAS  PubMed  Google Scholar 

  18. Mostov, K., Su, T. & ter Beest, M. Polarized epithelial membrane traffic: conservation and plasticity. Nature Cell Biol. 5, 287–293 (2003).

    CAS  PubMed  Google Scholar 

  19. Nelson, W. Adaptation of core mechanisms to generate cell polarity. Nature 422, 766–774 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schock, F. & Perrimon, N. Molecular mechanisms of epithelial morphogenesis. Annu. Rev. Cell Dev. Biol. 18, 463–493 (2002).

    CAS  PubMed  Google Scholar 

  21. Ang, A. L. et al. Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells. J. Cell Biol. 167, 531–543 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Brown, P. S. et al. Definition of distinct compartments in polarized Madin–Darby canine kidney (MDCK) cells for membrane-volume sorting, polarized sorting and apical recycling. Traffic 1, 124–140 (2000).

    CAS  PubMed  Google Scholar 

  23. Polishchuk, R., Di Pentima, A. & Lippincott-Schwartz, J. Delivery of raft-associated, GPI-anchored proteins to the apical surface of polarized MDCK cells by a transcytotic pathway. Nature Cell Biol. 6, 297–307 (2004).

    CAS  PubMed  Google Scholar 

  24. Lisanti, M., Sargiacomo, M., Graeve, L., Saltiel, A. & Rodriguez-Boulan, E. Polarized apical distribution of glycosyl phosphatidylinositol anchored proteins in a renal epithelial line. Proc. Natl Acad. Sci. USA 85, 9557–9561 (1988). First indication that a lipid (GPI) contributes to apical targeting.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lisanti, M., Caras, I. P., Davitz, M. A. & Rodriguez-Boulan, E. A glycophospholipid membrane anchor acts as an apical targeting signal in polarized epithelial cells. J. Cell Biol. 109, 2145–2156 (1989).

    CAS  PubMed  Google Scholar 

  26. Brown, D. A., Crise, B. & Rose, J. K. Mechanism of membrane anchoring affects polarized expression of two proteins in MDCK cells. Science 245, 1499–1501 (1989).

    CAS  PubMed  Google Scholar 

  27. Scheiffele, P., Peranen, J. & Simons, K. N-glycans as apical sorting signals in epithelial cells. Nature 378, 96–98 (1995). First demonstration of N -glycans as apical sorting signals.

    CAS  PubMed  Google Scholar 

  28. Yeaman, C. et al. The O-glycosylated stalk domain is required for apical sorting of neurotrophin receptors in polarized MDCK cells. J. Cell Biol. 139, 929–940 (1997). First indication that O -glycans function as an apical targeting mechanism.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Alfalah, M. et al. O-linked glycans mediate apical sorting of human intestinal sucrase-isomaltase through association with lipid rafts. Curr. Biol. 9, 593–596 (1999).

    CAS  PubMed  Google Scholar 

  30. Rodriguez-Boulan, E. & Gonzalez, A. Glycans in post-Golgi apical targeting: sorting signals or structural props? Trends Cell Biol. 9, 291–294 (1999).

    CAS  PubMed  Google Scholar 

  31. Gut, A. et al. Carbohydrate-mediated Golgi to cell surface transport and apical targeting of membrane proteins. EMBO J. 17, 1919–1929 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fiedler, K. & Simons, K. The role of N-glycans in the secretory pathway. Cell 81, 309–312 (1995).

    CAS  PubMed  Google Scholar 

  33. Marzolo, M. P., Bull, P. & Gonzalez, A. Apical sorting of hepatitis B surface antigen (HBsAg) is independent of N-glycosylation and glycosylphosphatidylinositol-anchored protein segregation. Proc. Natl Acad. Sci. USA 94, 1834–1839 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bravo-Zehnder, M. et al. Apical sorting of a voltage- and Ca2+-activated K+ channel α- subunit in Madin–Darby canine kidney cells is independent of N-glycosylation. Proc. Natl Acad. Sci. USA 97, 13114–13119 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tai, A. W., Chuang, J. Z., Bode, C., Wolfrum, U. & Sung, C. H. Rhodopsin's carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell 97, 877–887 (1999).

    CAS  PubMed  Google Scholar 

  36. Takeda, T., Yamazaki, H. & Farquhar, M. G. Identification of an apical sorting determinant in the cytoplasmic tail of megalin. Am. J. Physiol. Cell Physiol. 284, C1105–C1113 (2003).

    CAS  PubMed  Google Scholar 

  37. Marzolo, M. P. et al. Differential distribution of low-density lipoprotein-receptor-related protein (LRP) and megalin in polarized epithelial cells is determined by their cytoplasmic domains. Traffic 4, 273–288 (2003).

    CAS  PubMed  Google Scholar 

  38. Altschuler, Y., Hodson, C. & Milgram, S. L. The apical compartment: trafficking pathways, regulators and scaffolding proteins. Curr. Opin. Cell Biol. 15, 423–429 (2003).

    CAS  PubMed  Google Scholar 

  39. Marmorstein, A. D. et al. Saturation of, and competition for entry into, the apical secretory pathway. Proc. Natl Acad. Sci. USA 97, 3248–3253 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Fullekrug, J., Scheiffele, P. & Simons, K. VIP-36 localisation to the early secretory pathway. J. Cell Sci. 112, 2813–2821 (1999).

    CAS  PubMed  Google Scholar 

  41. van Meer, G. & Simons, K. Lipid polarity and sorting in epithelial cells. J. Cell Biochem. 36, 51–58 (1988). The concept of lipid rafts was proposed.

    CAS  PubMed  Google Scholar 

  42. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

    CAS  PubMed  Google Scholar 

  43. Paladino, S. et al. Protein oligomerization modulates raft partitioning and apical sorting of GPI-anchored proteins. J. Cell Biol. 167, 699–709 (2004). An exciting observation that throws light on the role of protein oligomerization in promoting apical targeting.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Benting, J. H., Rietveld, A. G. & Simons, K. N-Glycans mediate the apical sorting of a GPI-anchored, raft-associated protein in Madin–Darby canine kidney cells. J. Cell Biol. 146, 313–320 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sharma, P. et al. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116, 577–589 (2004).

    CAS  PubMed  Google Scholar 

  46. Hannan, L. A., Lisanti, M. P., Rodriguez-Boulan, E. & Edidin, M. Correctly sorted molecules of a GPI-anchored protein are clustered and immobile when they arrive at the apical surface of MDCK cells. J. Cell Biol. 120, 353–358 (1993). Initial proposal that a clustering event might be involved in apical targeting of GPI-anchored proteins.

    CAS  PubMed  Google Scholar 

  47. Mayor, S., Rothenberg, K. G. & Maxfield, F. R. Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science 264, 1948–1951 (1994).

    CAS  PubMed  Google Scholar 

  48. Verkade, P., Harder, T., Lafont, F. & Simons, K. Induction of caveolae in the apical plasma membrane of Madin–Darby canine kidney cells. J. Cell Biol. 148, 727–739 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lisanti, M. P., Le Bivic, A., Saltiel, A. & Rodriguez-Boulan, E. Preferred apical distribution of glycosyl-phosphatidylinositol (GPI) anchored proteins: a highly conserved feature of the polarized epithelial cell phenotype. J. Memb. Biol. 268, 155–167 (1990).

    Google Scholar 

  50. Le Bivic, A., Garcia, M. & Rodriguez-Boulan, E. Ricin resistant Madin–Darby canine kidney cells missort a major endogenous apical sialoglycoprotein. J. Biol. Chem. 268, 6909–6916 (1993).

    CAS  PubMed  Google Scholar 

  51. Scheiffele, P. et al. Caveolin-1 and-2 in the exocytic pathway of MDCK cells. J. Cell Biol. 140, 795–806 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Puertollano, R., Martinez-Menarguez, J. A., Batista, A., Ballesta, J. & Alonso, M. A. An intact dilysine-like motif in the carboxyl terminus of MAL is required for normal apical transport of the influenza virus hemagglutinin cargo protein in epithelial Madin–Darby canine kidney cells. Mol. Biol. Cell 12, 1869–1883 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mostov, K. E., Kops, A. B. & Deitcher, D. L. Deletion of the cytoplasmic domain of the polymeric immunoglobulin receptor prevents basolateral localization and endocytosis. Cell 47, 359–364 (1986). The first demonstration that basolateral sorting information exists in the cytoplasmic domain.

    CAS  PubMed  Google Scholar 

  54. Casanova, J. E., Apodaca, G. & Mostov, K. E. An autonomous signal for basolateral sorting in the cytoplasmic domain of the polymeric immunoglobulin receptor. Cell 66, 65–75 (1991). Identification of one of the first basolateral signals.

    CAS  PubMed  Google Scholar 

  55. Hunziker, W., Harter, C., Matter, K. & Mellman, I. Basolateral sorting in MDCK cells requires a distinct cytoplasmic domain determinant. Cell 66, 907–920 (1991). Identification of one of the first basolateral signals.

    CAS  PubMed  Google Scholar 

  56. Matter, K., Hunziker, W. & Mellman, I. Basolateral sorting of LDL receptor in MDCK cells: The cytoplasmic domain contains two tyrosine-dependent targeting determinants. Cell 71, 741–753 (1992).

    CAS  PubMed  Google Scholar 

  57. Brewer, C. B. & Roth, M. G. A single amino acid change in the cytoplasmic domain alters the polarized delivery of influenza viral hemagglutin. J. Cell Biol. 114, 413–421 (1991) Showed dual importance of tyrosine signals in endocytosis and basolateral targeting.

    CAS  PubMed  Google Scholar 

  58. Le Bivic, A. et al. An internal deletion in the cytoplasmic tail reverses the apical localization of human NGF receptor in transfected MDCK cells. J. Cell Biol. 115, 607–618 (1991).

    CAS  PubMed  Google Scholar 

  59. Hunziker, W. & Fumey, C. A di-leucine motif mediates endocytosis and basolateral sorting of macrophage IgG Fc receptors in MDCK cells. EMBO J. 13, 2963–2969 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Muth, T. R. & Caplan, M. J. Transport protein trafficking in polarized cells. Annu. Rev. Cell Dev. Biol. 19, 333–366 (2003).

    CAS  PubMed  Google Scholar 

  61. Wehrle-Haller, B. & Imhof, B. A. Stem cell factor presentation to c-Kit. Identification of a basolateral targeting domain. J. Biol. Chem. 276, 12667–12674 (2001).

    CAS  PubMed  Google Scholar 

  62. Koivisto, U. M., Hubbard, A. L. & Mellman, I. A novel cellular phenotype for familial hypercholesterolemia due to a defect in polarized targeting of LDL receptor. Cell 105, 575–585 (2001).

    CAS  PubMed  Google Scholar 

  63. Nelson, W. J. & Veshnock, P. J. Ankyrin binding to (Na+, K+) ATPase and implications for the organization of membrane domains in polarized cells. Nature 328, 533–536 (1987). Demonstration of an alternative mechanism for basolateral localization: immobilization by the membrane cytoskeleton.

    CAS  PubMed  Google Scholar 

  64. Pimplikar, S. W., Ikonen, E. & Simons, K. Basolateral protein transport in streptolysin O-permeabilized MDCK cells. J. Cell Biol. 125, 1025–1035 (1994).

    CAS  PubMed  Google Scholar 

  65. Musch, A., Xu, H., Shields, D. & Rodriguez-Boulan, E. Transport of vesicular stomatitis virus G protein to the cell surface is signal mediated in polarized and nonpolarized cells. J. Cell Biol. 133, 543–558 (1996).

    CAS  PubMed  Google Scholar 

  66. Soza, A. et al. Sorting competition with membrane-permeable peptides in intact epithelial cells revealed discrimination of transmembrane proteins not only at the trans-Golgi network but also at pre-Golgi stages. J. Biol. Chem. 279, 17376–17383 (2004).

    CAS  PubMed  Google Scholar 

  67. Skibbens, J. E., Roth, M. G. & Matlin, K. S. Differential extractability of influenza virus hemagglutinin during intracellular transport in polarized epithelial cells and non polar fibroblasts. J. Cell Biol. 108, 821–832 (1989). First demonstration that an apical transmembrane protein might be associated with lipid rafts.

    CAS  PubMed  Google Scholar 

  68. Yoshimori, T., Keller, P., Roth, M. G. & Simons, K. Different biosynthetic transport routes to the plasma membrane in BHK and CHO cells. J. Cell Biol. 133, 247–256 (1996).

    CAS  PubMed  Google Scholar 

  69. Matter, K., Whitney, J. A., Yamamoto, E. M. & Mellman, I. Common signals control low density lipoprotein receptor sorting in endosomes and in the Golgi complex of MDCK cells. Cell 74, 1053–1064 (1993). Showed common signals that control sorting in endosomes and the Golgi complex.

    CAS  PubMed  Google Scholar 

  70. Aroeti, B. & Mostov, K. E. Polarized sorting of the polymeric immunoglobulin receptor in the exocytic and endocytic pathway is controlled by the same amino acids. EMBO J. 13, 2297–2304 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bonifacino, J. S. & Lippincott-Schwartz, J. Coat proteins: shaping membrane transport. Nature Rev. Mol. Cell Biol. 4, 409–414 (2003).

    CAS  Google Scholar 

  72. Folsch, H., Ohno, H., Bonifacino, J. S. & Mellman, I. A novel clathrin adaptor complex mediates basolateral targeting in polarized epithelial cells. Cell 99, 189–198 (1999). Reports the characterization of an epithelial adaptor for basolateral sorting signals. Provides a review of the basolateral signal subfield.

    CAS  PubMed  Google Scholar 

  73. Simmen, T., Honing, S., Icking, A., Tikkanen, R. & Hunziker, W. AP-4 binds basolateral signals and participates in basolateral sorting in epithelial MDCK cells. Nature Cell Biol. 4, 154–159 (2002).

    CAS  PubMed  Google Scholar 

  74. Ohno, H. et al. Mu1B, a novel adaptor medium chain expressed in polarized epithelial cells. FEBS Lett. 4, 215–220 (1999).

    Google Scholar 

  75. Gan, Y., McGraw, T. E. & Rodriguez-Boulan, E. The epithelial-specific adaptor AP1B mediates post-endocytic recycling to the basolateral membrane. Nature Cell Biol. 4, 605–609 (2002). Shows that two different forms of the AP1 adaptor localize to different organelles and that AP1B controls basolateral sorting in endosomes.

    CAS  PubMed  Google Scholar 

  76. Folsch, H., Pypaert, M., Maday, S., Pelletier, L. & Mellman, I. The AP-1A and AP-1B clathrin adaptor complexes define biochemically and functionally distinct membrane domains. J. Cell Biol. 163, 351–362 (2003).

    PubMed  PubMed Central  Google Scholar 

  77. Futter, C. E., Connolly, C. N., Cutler, D. F. & Hopkins, C. R. Newly synthesized transferrin receptors can be detected in the endosome before they appear on the cell surface. J. Biol. Chem. 270, 10999–11003 (1995).

    CAS  PubMed  Google Scholar 

  78. Orzech, E., Cohen, S., Weiss, A. & Aroeti, B. Interactions between the exocytic and endocytic pathways in polarized Madin–Darby canine kidney cells. J. Biol. Chem. 275, 15207–15219 (2000).

    CAS  PubMed  Google Scholar 

  79. Wang, Y. J. et al. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114, 299–310 (2003).

    CAS  PubMed  Google Scholar 

  80. Nishimura, N., Plutner, H., Hahn, K. & Balch, W. E. The δ subunit of AP-3 is required for efficient transport of VSV-G from the trans-Golgi network to the cell surface. Proc. Natl Acad. Sci. USA 99, 6755–6760 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Futter, C. E. et al. In polarized MDCK cells basolateral vesicles arise from clathrin–γ-adaptin-coated domains on endosomal tubules. J. Cell Biol. 141, 611–623 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Musch, A. Microtubule organization and function in epithelial cells. Traffic 5, 1–9 (2004).

    PubMed  Google Scholar 

  83. Allan, V. J., Thompson, H. M. & McNiven, M. A. Motoring around the Golgi. Nature Cell Biol. 4, E236–E242 (2002).

    CAS  PubMed  Google Scholar 

  84. Hirschberg, K. et al. Kinetic analysis of secretory protein traffic and characterization of Golgi to plasma membrane transport intermediates in living cells. J. Cell Biol. 143, 1485–1503 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Toomre, D., Keller, P., White, J., Olivo, J. C. & Simons, K. Dual-color visualization of trans-Golgi network to plasma membrane traffic along microtubules in living cells. J. Cell Sci. 112, 21–33 (1999).

    CAS  PubMed  Google Scholar 

  86. Kreitzer, G., Marmorstein, A., Okamoto, P., Vallee, R. & Rodriguez-Boulan, E. Kinesin and dynamin are required for post-Golgi transport of a plasma-membrane protein. Nature Cell Biol. 2, 125–127 (2000).

    CAS  PubMed  Google Scholar 

  87. Keller, P., Toomre, D., Diaz, E., White, J. & Simons, K. Multicolour imaging of post-Golgi sorting and trafficking in live cells. Nature Cell Biol 3, 140–149 (2001).

    CAS  PubMed  Google Scholar 

  88. Kreitzer, G. et al. Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells. Nature Cell Biol. 5, 126–136 (2003). Reports live-cell-imaging studies that show the relocation of exocytosis sites when MDCK cells polarize. Basolateral exocytosis localizes to the junctional area.

    CAS  PubMed  Google Scholar 

  89. Jacob, R. & Naim, H. Y. Apical membrane proteins are transported in distinct vesicular carriers. Curr. Biol. 11, 1444–1450 (2001).

    CAS  PubMed  Google Scholar 

  90. Noda, Y. et al. KIFC3, a microtubule minus end-directed motor for the apical transport of annexin XIIIb-associated Triton-insoluble membranes. J. Cell Biol. 155, 77–88 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Stammes, M. Regulating the actin cytoskeleton during vesicular transport. Curr. Opin. Cell Biol. 14, 428–433 (2002).

    Google Scholar 

  92. Musch, A., Cohen, D., Kreitzer, G. & Rodriguez-Boulan, E. Cdc42 regulates the exit of apical and basolateral proteins from the trans-Golgi network. EMBO J. 20, 2171–2179 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Durrbach, A., Raposo, G., Tenza, D., Louvard, D. & Coudrier, E. Truncated brush border myosin I affects membrane traffic in polarized epithelial cells. Traffic 1, 411–424 (2000).

    CAS  PubMed  Google Scholar 

  94. Sheff, D. R., Kroschewski, R. & Mellman, I. Actin dependence of polarized receptor recycling in Madin–Darby canine kidney cell endosomes. Mol. Biol. Cell 13, 262–275 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hales, C. M., Vaerman, J. P. & Goldenring, J. R. Rab11 family interacting protein 2 associates with Myosin Vb and regulates plasma membrane recycling. J. Biol. Chem. 277, 50415–50421 (2002).

    CAS  PubMed  Google Scholar 

  96. Musch, A., Cohen, D. & Rodriguez-Boulan, E. Myosin II is involved in the production of constitutive transport vesicles from the trans-Golgi network. J. Cell Biol. 138, 291–306 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Orth, J. D. & McNiven, M. A. Dynamin at the actin–membrane interface. Curr. Opin. Cell Biol. 15, 31–39 (2003).

    CAS  PubMed  Google Scholar 

  98. Galli, T. et al. A novel tetanus neurotoxin-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells. Mol. Biol. Cell 9, 1437–1448 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Low, S. H. et al. The SNARE machinery is involved in apical plasma membrane trafficking in MDCK cells. J. Cell Biol. 141, 1503–1513 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Low, S. H. et al. Differential localization of syntaxin isoforms in polarized Madin–Darby canine kidney cells. Mol. Biol. Cell 7, 2007–2018 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lafont, F. et al. Raft association of SNAP receptors acting in apical trafficking in Madin–Darby canine kidney cells. Proc. Natl Acad. Sci. USA 96, 3734–3738 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Riento, K., Kauppi, M., Keranen, S. & Olkkonen, V. M. Munc18-2, a functional partner of syntaxin 3, controls apical membrane trafficking in epithelial cells. J. Biol. Chem. 275, 13476–13483 (2000).

    CAS  PubMed  Google Scholar 

  103. Lafont, F., Lecat, S., Verkade, P. & Simons, K. Annexin XIIIb associates with lipid microdomains to function in apical delivery. J. Cell Biol. 142, 1413–1427 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Jacob, R. et al. Annexin II is required for apical transport in polarized epithelial cells. J. Biol. Chem. 279, 3680–3684 (2004).

    CAS  PubMed  Google Scholar 

  105. Thurmond, D. C. & Pessin, J. E. Discrimination of GLUT4 vesicle trafficking from fusion using a temperature-sensitive Munc18c mutant. EMBO J. 19, 3565–3575 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Musch, A. et al. Mammalian homolog of Drosophila tumor suppressor lethal (2) giant larvae interacts with basolateral exocytic machinery in Madin–Darby canine kidney cells. Mol. Biol. Cell 13, 158–168 (2002).

    CAS  PubMed  Google Scholar 

  107. Lipschutz, J. H. & Mostov, K. E. Exocytosis: the many masters of the exocyst. Curr. Biol. 12, R212–R214 (2002).

    CAS  PubMed  Google Scholar 

  108. Grindstaff, K. et al. Sec6/8 complex is recruited to cell–cell contacts and specifies transport vesicle delivery to the basal–lateral membrane in epithelial cells. Cell 93, 731–740 (1998). Reports a key role for exocyst in basolateral targeting.

    CAS  PubMed  Google Scholar 

  109. Yeaman, C., Grindstaff, K., Wright, J. & Nelson, W. Sec 6/8 complexes on trans-Golgi network and plasma membrane regulate late stages of exocytosis in mammalian cells. J. Cell Biol. 155, 593–604 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Yeaman, C. et al. Protein kinase D regulates basolateral membrane protein exit from trans-Golgi network. Nature Cell Biol. 6, 106–112 (2004).

    CAS  PubMed  Google Scholar 

  111. Moskalenko, S. et al. The exocyst is a Ral effector complex. Nature Cell Biol. 4, 66–72 (2002).

    CAS  PubMed  Google Scholar 

  112. Ang, A., Fölsch, H., Koivisto, U., Pypaert, M. & Mellman, I. The Rab8 GTPase selectively regulates AP-1B-dependent basolateral transport in polarized Madin–Darby canine kidney cells. J. Cell Biol. 163, 339–350 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Huber, L. A. et al. Rab8, a small GTPase involved in vesicular traffic between the TGN and the basolateral plasma membrane. J. Cell Biol. 123, 35–45 (1993).

    CAS  PubMed  Google Scholar 

  114. Louvard, D. Apical membrane aminopeptidase appears at site of cell–cell contact in cultured kidney epithelial cells. Proc. Natl Acad. Sci. USA 77, 4132–4136 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Kroschewski, R., Hall, A. & Mellman, I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nature Cell Biol. 1, 8–13 (1999).

    CAS  PubMed  Google Scholar 

  116. Cohen, D., Musch, A. & Rodriguez-Boulan, E. Selective control of basolateral membrane protein polarity by cdc42. Traffic 2, 556–564 (2001).

    CAS  PubMed  Google Scholar 

  117. Gonzalez-Mariscal, L., Chavez de Ramirez, B. & Cereijido, M. Tight-junction formation in cultured epithelial cells (MDCK). J. Membr. Biol. 86, 113–125 (1985).

    CAS  PubMed  Google Scholar 

  118. Ojakian, G. K., Nelson, W. J. & Beck, K. A. Mechanisms for de novo biogenesis of an apical membrane compartment in groups of simple epithelial cells surrounded by extracellular matrix. J. Cell Sci. 110, 2781–2794 (1997).

    CAS  PubMed  Google Scholar 

  119. Vega Salas, D. E., Salas, P. J. & Rodriguez-Boulan, E. Modulation of the expression of an apical plasma membrane protein of Madin–Darby canine kidney epithelial cells: cell–cell interactions control the appearance of a novel intracellular storage compartment. J. Cell Biol. 104, 1249–1259 (1987).

    CAS  PubMed  Google Scholar 

  120. Low, S. H. et al. Intracellular redirection of plasma membrane trafficking after loss of epithelial cell polarity. Mol. Biol. Cell 11, 3045–3060 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Cohen, D., Brennwald, P., Rodriguez-Boulan, E. & Musch, A. Mammalian PAR-1 determines epithelial lumen polarity by organizing the microtubule cytoskeleton. J. Cell Biol. 164, 717–728 (2004). A kinase for microtubule-associated proteins is a key organizer of microtubules and lumen polarity in epithelial cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Vega-Salas, D. E., Salas, P. J. I. & Rodriguez-Boulan, E. Exocytosis of vacuolar apical compartment (VAC): a cell–cell contact controlled mechanism for the establishment of the apical plasma membrane domain in epithelial cells. J. Cell Biol. 107, 1717–1728 (1988).

    CAS  PubMed  Google Scholar 

  123. Amerongen, H. M., Mack, J. A., Wilson, J. M. & Neutra, M. R. Membrane domains of intestinal epithelial cells: distribution of Na+,K+ ATPase and the membrane skeleton in adult rat intestine during fetal development and after epithelial isolation. J. Cell Biol. 109, 2129–2138 (1989).

    CAS  PubMed  Google Scholar 

  124. Anderson, J. M., Van Itallie, C. M. & Fanning, A. S. Setting up a selective barrier at the apical junction complex. Curr. Opin. Cell Biol. 16, 140–145 (2004).

    CAS  PubMed  Google Scholar 

  125. Benton, R., Palacios, I. M. & Johnston, D. S. Drosophila 14-3-3/PAR5 is an essential mediator of PAR-1 function in axis formation. Dev. Cell 3, 659–671 (2002).

    CAS  PubMed  Google Scholar 

  126. Suzuki, A. et al. aPKC acts upstream of PAR-1b in both the establishment and maintenance of mammalian epithelial polarity. Curr. Biol. 14, 1425–1435 (2004).

    CAS  PubMed  Google Scholar 

  127. Benton, R. & St Johnston, D. Drosophila PAR-1 and 14-3-3 inhibit Bazooka/PAR-3 to establish complementary cortical domains in polarized cells. Cell 115, 691–704 (2003).

    CAS  PubMed  Google Scholar 

  128. Hurd, T. W. et al. Phosphorylation-dependent binding of 14-3-3 to the polarity protein Par3 regulates cell polarity in mammalian epithelia. Curr. Biol. 13, 2082–2090 (2003).

    CAS  PubMed  Google Scholar 

  129. Macara, I. G. Par proteins: partners in polarization. Curr. Biol. 14, R160–R162 (2004).

    CAS  PubMed  Google Scholar 

  130. Baas, A. et al. Complete polarization of single intestinal cells upon activation of LKB1 by Strad. Cell 116, 457–466 (2004).

    CAS  PubMed  Google Scholar 

  131. Cohen, D., Rodriguez-Boulan, E. & Musch, A. Par-1 promotes a hepatic mode of apical protein trafficking in MDCK cells. Proc. Natl Acad. Sci. USA 101, 13792–13797 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Sargiacomo, M., Lisanti, M., Graeve, L., Le Bivic, A. & Rodriguez-Boulan, E. Integral and peripheral protein compositions of the apical and basolateral membrane domains in MDCK cells. J. Memb. Biol. 107, 277–286 (1989).

    CAS  Google Scholar 

  133. Le Bivic, A., Real, F. X. & Rodriguez-Boulan, E. Vectorial targeting of apical and basolateral plasma membrane proteins in a human adenocarcinoma epithelial cell line. Proc. Natl Acad. Sci. USA 86, 9313–9317 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Gravotta, D., Adesnik, M. & Sabatini, D. D. Transport of influenza HA from the trans-Golgi network to the apical surface of MDCK cells permeabilized in their basolateral membranes: energy dependence and involvement of GTP-binding proteins. J. Cell Biol. 111, 2893–2908 (1990).

    CAS  PubMed  Google Scholar 

  135. Pimplikar, S. W. & Simons, K. Activators of protein kinase A stimulate apical but not basolateral transport in epithelial Madin–Darby canine kidney cells. J. Biol. Chem. 269, 19054–19059 (1994).

    CAS  PubMed  Google Scholar 

  136. Simons, K. & Virta, H. Perforated MDCK cells support intracellular transport. EMBO J. 6, 2241–2247 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Marmorstein, A. D. et al. Apical polarity of N-CAM and EMMPRIN in retinal pigment epithelium resulting from suppression of basolateral signal recognition. J. Cell Biol. 142, 697–710 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Roush, D. L., Gottardi, C. J., Naim, H. Y., Roth, M. G. & Caplan, M. J. Tyrosine-based membrane protein sorting signals are differentially interpreted by polarized Madin–Darby canine kidney and LLC-PK1 epithelial cells. J. Biol. Chem. 273, 26862–26869 (1998).

    CAS  PubMed  Google Scholar 

  139. Casanova, J. E., Mishumi, Y., Ikehara, Y., Hubbard, A. L. & Mostov, K. E. Direct apical sorting of rat liver dipeptidylpeptidase IV expressed in Madin–Darby kidney cells. J. Biol. Chem. 266, 24428–24432 (1991).

    CAS  PubMed  Google Scholar 

  140. Bonilha, V. L., Marmorstein, A. D., Cohen-Gould, L. & Rodriguez-Boulan, E. Apical sorting of hemagglutinin by transcytosis in retinal pigment epithelium. J. Cell Sci. 110, 1717–1727 (1997).

    CAS  PubMed  Google Scholar 

  141. Zurzolo, C., Le Bivic, A., Quaroni, A., Nitsch, L. & Rodriguez-Boulan, E. Modulation of transcytotic and direct targeting pathways in a polarized thyroid cell line. EMBO J. 11, 2337–2344 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Bartles, J. R., Feracci, H. M., Stieger, B. & Hubbard, A. L. Biogenesis of the rat hepatocyte plasma membrane in vivo: comparison of the pathways taken by apical and basolateral proteins using subcellular fractionation. J. Cell Biol. 105, 1241–1251 (1987). Identifies transcytosis as a primary mode of delivery of apical proteins in liver cells.

    CAS  PubMed  Google Scholar 

  143. Kipp, H. & Arias, I. M. Newly synthesized canalicular ABC transporters are directly targeted from the Golgi to the hepatocyte apical domain in rat liver. J. Biol. Chem. 275, 15917–15925 (2000).

    CAS  PubMed  Google Scholar 

  144. Brown, D. A. & Rose, J. K. Sorting of GPI-anchored proteins to glycolipid enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533–544 (1992). Showed that GPI-anchored proteins become lipid-raft-associated as they move into the Golgi complex.

    CAS  PubMed  Google Scholar 

  145. Shvartsman, D. E., Kotler, M., Tall, R. D., Roth, M. G. & Henis, Y. I. Differently anchored influenza hemagglutinin mutants display distinct interaction dynamics with mutual rafts. J. Cell Biol. 163, 879–888 (2003). Reports the biophysical characterization of different types of lipid rafts and their possible role in apical targeting.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Zurzolo, C., van't Hof, W., van Meer, G. & Rodriguez-Boulan, E. VIP21/caveolin, glycosphingolipid clusters and the sorting of glycosylphosphatidylinositol anchored proteins in epithelial cells. EMBO J. 13, 42–53 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Mays, R. W. et al. Hierarchy of mechanisms involved in generating Na/K-ATPase polarity in MDCK epithelial cells. J. Cell Biol. 130, 1105–1115 (1995).

    CAS  PubMed  Google Scholar 

  148. Keller, P. & Simons, K. Cholesterol is required for surface transport of influenza virus hemagglutinin. J. Cell Biol. 140, 1357–1367 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. van Meer, G., Stelzer, E. H., Wijnaendts-van-Resandt, R. W. & Simons, K. Sorting of sphingolipids in epithelial (Madin–Darby canine kidney) cells. J. Cell Biol. 105, 1623–1635 (1987).

    CAS  PubMed  Google Scholar 

  150. van Helvoort, A. et al. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 87, 507–517 (1996).

    CAS  PubMed  Google Scholar 

  151. Nabi, I. R., Le Bivic, A., Fambrough, D. & Rodriguez-Boulan, E. An endogenous MDCK lysosomal membrane glycoprotein is targeted basolaterally before delivery to lysosomes. J. Cell Biol. 115, 1573–1584 (1991).

    CAS  PubMed  Google Scholar 

  152. Harter, C. & Mellman, I. Transport of the lysosomal membrane glycoprotein lgp120 (lgp-A) to lysosomes does not require appearance on the plasma membrane. J. Cell Biol. 117, 311–325 (1992).

    CAS  PubMed  Google Scholar 

  153. Apodaca, G., Katz, L. A. & Mostov, K. E. Receptor-mediated transcytosis of IgA in MDCK cells is via apical recycling endosomes. J. Cell Biol. 125, 67–86 (1994).

    CAS  PubMed  Google Scholar 

  154. Bruns, J., Ellis, M., Jeromin, A. & Weisz, O. A. Multiple roles for phosphatidylinositol 4-kinase in biosynthetic transport in polarized MDCK cells. J. Biol. Chem. 277, 2012–2018 (2002).

    CAS  PubMed  Google Scholar 

  155. Verges, M. et al. The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. Nature Cell Biol. 6, 763–769 (2004).

    CAS  PubMed  Google Scholar 

  156. Carreno, S., Engqvist-Goldstein, A. E., Zhang, C. X., McDonald, K. L. & Drubin, D. G. Actin dynamics coupled to clathrin-coated vesicle formation at the trans-Golgi network. J. Cell Biol. 165, 781–788 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Casanova, J. E. et al. Association of Rab25 and Rab11a with the apical recycling system of polarized Madin–Darby canine kidney cells. Mol. Biol. Cell 10, 47–61 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Yeaman, C., Grindstaff, K. K. & Nelson, W. J. Mechanism of recruiting Sec6/8 (exocyst) complex to the apical junctional complex during polarization of epithelial cells. J. Cell Sci. 117, 559–570 (2004).

    CAS  PubMed  Google Scholar 

  159. Bacallao, R. et al. The subcellular organization of Madin–Darby canine kidney cells during the formation of a polarized epithelium. J. Cell Biol. 109, 2817–2832 (1989).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the National Institutes of Health (E.R.-B.), a Jules and Doris Stein Professorship from the Research to Prevent Blindness Foundation (E.R.-B.) and a Career Development Award from the American Heart Association (A.M.). We are grateful to A. Gonzalez, T. McGraw, J. Nelson and V. Malhotra for useful comments on the manuscript. Our goal to cite mostly primary references is not free of arbitrariness given the limited number of references allowed by the format of the review and the rapid growth of the field. We apologize that several excellent papers could not be cited individually and could only be discussed indirectly or through reviews.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Swiss-Prot

annexin 13b

μ1B

caveolin-1

Cdc42

GFP

HA

KIFC3

LDL receptor

p75NTR

PAR1

PAR3

Rab8

Rab11

RalA

rhodopsin

SNAP23

STRAD

TCTEX

ti-VAMP

VIP-36

VSVG

Glossary

TIGHT JUNCTION

The most apical intercellular junctions in mammalian epithelial cells, which function as selective (semi-permeable) diffusion barriers between individual cells. They are identified as a belt-like region in which two lipid-apposing membranes lie close together.

ADHERENS JUNCTION

A cell–cell adhesion complex that contains cadherins and catenins that are attached to cytoplasmic actin filaments.

DESMOSOME

A patch-like adhesive intercellular junction found in vertebrate tissues that is linked to intermediate filaments.

APICAL SURFACE

The surface of an epithelial or endothelial cell that faces the lumen of a cavity or tube or the outside of the organism.

BASOLATERAL SURFACE

The surface of an epithelial cell that adjoins underlying tissue.

TRANS-GOLGI NETWORK

(TGN). Membranous compartment from which vesicles bud to deliver proteins and other materials to the cell surface or to the late endosomes for delivery to lysosomes.

DOCKING/FUSION SITE

Vesicles and tubules that are targeted to the plasma membrane from the Golgi complex or from endosomes possess mechanisms by which to dock and fuse at the cell surface. These include tethering factors, Rab proteins and SNARE proteins.

GPI-ANCHOR

The function of this post-translational modification is to attach proteins to the exoplasmic leaflet of membranes, possibly to specific domains therein. The anchor is made of one molecule of phosphatidylinositol to which a carbohydrate chain is linked through the C-6 hydroxyl of the inositol. This anchor is linked to the protein through an ethanolamine phosphate moiety.

EXOPLASMIC

Facing the outside of the cell or the topologically equivalent lumen of organelles in the secretory pathway; the opposite of cytoplasmic.

GLYCAN

A polymer that consists of several monosaccharide residues (polysaccharide). In the case of GPI-anchored proteins, the basic unit is composed of glucosamine and three mannose residues.

LIPID RAFTS

Membrane microdomains that are enriched in cholesterol, sphingolipids and lipid-modified proteins such as GPI-linked proteins and palmitoylated proteins. These microdomains often function as platforms for signalling events.

LECTIN

A protein that can bind to carbohydrates with high selectivity. For example, concanavalin A is a lectin with affinity for mannose residues in glycoproteins.

FRAP

(fluorescence recovery after photobleaching). A live-cell-imaging technique used to study the mobility of fluorescent molecules. A pulse of high-intensity light is used to irreversibly photobleach a population of fluorophores in a target region. Recovery of fluorescence in the bleached region represents movement of fluorophores into that region.

FRET

(fluorescence resonance energy transfer). The non-radiative transfer of energy from a donor fluorophore to an acceptor fluorophore that is typically <80 Å away. FRET will only occur between fluorophores in which the emission spectrum of the donor has a significant overlap with the excitation of the acceptor.

CAVEOLAE

Flask-shaped invaginations of the plasma membrane that are coated with the protein caveolin. Caveolae are endocytosed in a clathrin-independent manner.

CHOROID PLEXUS

A capillary bed that is covered by transporting epithelial cells, and that protrudes on the cerebral ventricles. The cells are responsible for producing cerebral spinal fluid.

PDZ DOMAIN

A protein-interaction domain that often occurs in scaffolding proteins, and is named after the founding members of this protein family (Post-synaptic density protein of 95 kDa, Discs large and Zona occludens-1).

RETROMER COMPLEX

A protein complex that consists of Vps35, Vps26, Vps29, Vps17 and Vps5, which was discovered through genetic screens in Saccharomyces cerevisiae. It functions in the retrieval of proteins from the prevacuolar compartment and transport to the Golgi.

ADAPTIN

A tetrameric (for example, AP1, AP2, AP3 and AP4) or monomeric (such as GGAs) protein that promotes the formation of coated vesicles. Adaptins might interact with clathrin, small GTPases (such as Arf1) and microtubule-based motor proteins.

CLATHRIN

The main component of the coat that is associated with clathrin-coated vesicles, which are involved in membrane transport both in the endocytic and biosynthetic pathways.

RAB

A small protein with GTPase activity that is involved in the formation and delivery of vesicles.

TRANSCYTOSIS

Transport of macromolecules across a cell, which consists of the endocytosis of a macromolecule at one side of a monolayer and its exocytosis at the other side.

PRENYLATION

The enzymatic addition of prenyl moieties (geranyl, farnesyl or geranylgeranyl groups) to a protein as a post-translational modification.

SNARE

(soluble N-ethylmaleimide-sensitive fusion protein attachment protein (SNAP) receptor). SNARE proteins are a family of membrane-tethered coiled-coil proteins that regulate fusion reactions and target specificity in vesicle trafficking. They can be divided into v-SNAREs and t-SNAREs on the basis of their localization.

TOTAL-INTERNAL-REFLECTION MICROSCOPY

Fluorescence-microscopy technique with significant depth discrimination that can selectively excite only those fluorescent molecules within 100 nm of the interface between a cell and a coverslip.

BILE CANALICULI

Tiny channels on the surface of liver cells that collect the bile that they produce.

14-3-3 PROTEIN

A scaffolding protein that regulates the localization of other proteins by binding to conserved phosphotyrosine-containing motifs in a phosphorylation-dependent manner.

MICROVILLI

Small, finger-like projections (1–2-μm long and 100-nm wide) that occur on the exposed surfaces of epithelial cells to maximize the surface area.

MICROTUBULE-ORGANIZING CENTRE

(MTOC). Also called the centrosome or spindle-pole body, this structure nucleates and organizes microtubules.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez-Boulan, E., Kreitzer, G. & Müsch, A. Organization of vesicular trafficking in epithelia. Nat Rev Mol Cell Biol 6, 233–247 (2005). https://doi.org/10.1038/nrm1593

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1593

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing