Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulating the regulator: post-translational modification of RAS

Key Points

  • RAS proteins are molecular switches that regulate a wide range of signalling pathways by engaging effectors on cellular membranes. They are themselves regulated by various post-translational modifications (PTMs).

  • RAS proteins associate with membranes by virtue of a series of constitutive PTMs of their carboxy-terminal CAAX sequence. These PTMs include prenylation, proteolysis and carboxyl methylation.

  • Membrane association and trafficking of all RAS isoforms other than KRAS4B are also regulated by the reversible palmitoylation of Cys residues in the C-terminal hypervariable regions of the proteins.

  • Cistrans isomerization of a peptidyl-prolyl bond adjacent to a palmitate in HRAS acts as a molecular timer that regulates depalmitoylation and retrograde trafficking.

  • Phosphorylation of KRAS4B in its polybasic region allows this protein to dissociate from the plasma membrane through a mechanism known as the farnesyl–electrostatic switch.

  • Monoubiquitylation and diubiquitylation of HRAS regulate its association with endosomes, and monoubiquitylation of KRAS4B enhances its activation.

  • S-nitrosylation of Cys118 of RAS promotes guanine nucleotide exchange.

  • Toxins produced by Pseudomonas aeruginosa and Clostridium sordelli ADP-ribosylate and monglucosylate RAS, respectively, leading to diminished signalling.

Abstract

RAS proteins are monomeric GTPases that act as binary molecular switches to regulate a wide range of cellular processes. The exchange of GTP for GDP on RAS is regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), which regulate the activation state of RAS without covalently modifying it. By contrast, post-translational modifications (PTMs) of RAS proteins direct them to various cellular membranes and, in some cases, modulate GTP–GDP exchange. Important RAS PTMs include the constitutive and irreversible remodelling of its carboxy-terminal CAAX motif by farnesylation, proteolysis and methylation, reversible palmitoylation, and conditional modifications, including phosphorylation, peptidyl-prolyl isomerisation, monoubiquitylation, diubiquitylation, nitrosylation, ADP ribosylation and glucosylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RAS signalling.
Figure 2: PTM of the C-terminal membrane-targeting region of RAS.
Figure 3: RAS trafficking.
Figure 4: The acylation–deacylation cycle of HRAS.
Figure 5: The farnesyl–electrostatic switch of KRAS4B.
Figure 6: PTMs of RAS.

Similar content being viewed by others

References

  1. Malumbres, M. & Barbacid, M. RAS oncogenes: the first 30 years. Nature Rev. Cancer 3, 459–465 (2003).

    CAS  Google Scholar 

  2. Parada, L. F., Tabin, C. J., Shih, C. & Weinberg, R. A. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 297, 474–478 (1982).

    CAS  PubMed  Google Scholar 

  3. Der, C. J., Krontiris, T. G. & Cooper, G. M. Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc. Natl Acad. Sci. USA 79, 3637–3640 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Santos, E., Tronick, S. R., Aaronson, S. A., Pulciani, S. & Barbacid, M. T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB- and Harvey-MSV transforming genes. Nature 298, 343–347 (1982).

    CAS  PubMed  Google Scholar 

  5. Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Aoki, Y. et al. Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nature Genet. 37, 1038–1040 (2005).

    CAS  PubMed  Google Scholar 

  7. Schubbert, S. et al. Germline KRAS mutations cause Noonan syndrome. Nature Genet. 38, 331–336 (2006).

    CAS  PubMed  Google Scholar 

  8. Niihori, T. et al. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nature Genet. 38, 294–296 (2006).

    CAS  PubMed  Google Scholar 

  9. Cox, A. D. & Der, C. J. Ras history: the saga continues. Small Gtpases 1, 2–27 (2011).

    Google Scholar 

  10. Haigis, K. M. et al. Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nature Genet. 40, 600–608 (2008). Demonstrates significant biological differences in vivo between RAS isoforms.

    CAS  PubMed  Google Scholar 

  11. Choy, E. et al. Endomembrane trafficking of Ras: the CAAX motif targets proteins to the ER and Golgi. Cell 98, 69–80 (1999). Establishes the involvement of the endomembrane in RAS processing.

    CAS  PubMed  Google Scholar 

  12. Chiu, V. K. et al. Ras signalling on the endoplasmic reticulum and the Golgi. Nature Cell Biol. 4, 343–350 (2002). Reports RAS signalling from endomembranes for the first time.

    CAS  PubMed  Google Scholar 

  13. Bivona, T. G. et al. Phospholipase Cγ activates Ras on the Golgi apparatus by means of RasGRP1. Nature 424, 694–698 (2003).

    CAS  PubMed  Google Scholar 

  14. Casar, B. et al. Ras subcellular localization defines extracellular signal-regulated kinase 1 and 2 substrate specificity through distinct utilization of scaffold proteins. Mol. Cell. Biol. 29, 1338–1353 (2009).

    CAS  PubMed  Google Scholar 

  15. Vigil, D., Cherfils, J., Rossman, K. L. & Der, C. J. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nature Rev. Cancer 10, 842–857 (2010).

    CAS  Google Scholar 

  16. Barbacid, M. ras genes. Annu. Rev. Biochem. 56, 779–827 (1987).

    CAS  PubMed  Google Scholar 

  17. Schlichting, I. et al. Time-resolved X-ray crystallographic study of the conformational change in Ha-Ras p21 protein on GTP hydrolysis. Nature 345, 309–315 (1990).

    CAS  PubMed  Google Scholar 

  18. Zhao, C., Du, G., Skowronek, K., Frohman, M. A. & Bar-Sagi, D. Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Nature Cell Biol. 9, 706–712 (2007).

    CAS  PubMed  Google Scholar 

  19. Yadav, K. K. & Bar-Sagi, D. Allosteric gating of Son of sevenless activity by the histone domain. Proc. Natl Acad. Sci. USA 107, 3436–3440 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chung, H. H., Benson, D. R., Cornish, V. W. & Schultz, P. G. Probing the role of loop 2 in Ras function with unnatural amino acids. Proc. Natl Acad. Sci. USA 90, 10145–10149 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rojas, J. & Santos, E. in Proteins and Cell Regulation Vol. 4: RAS Family GTPases (Ed. Der, C.) 15–43 (Springer, 2006).

    Google Scholar 

  22. Ahmadian, M. R., Stege, P., Scheffzek, K. & Wittinghofer, A. Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras. Nature Struct. Biol. 4, 686–689 (1997).

    CAS  PubMed  Google Scholar 

  23. Scheffzek, K. et al. The Ras–RasGAP complex: structural basis for GTPase activation and its loss in oncogenic mutants. Science 277, 333–339 (1997).

    CAS  PubMed  Google Scholar 

  24. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  25. Dickson, B., Sprenger, F., Morrison, D. & Hafen, E. Raf functions downstream of Ras1 in the Sevenless signal transduction pathway. Nature 360, 600–603 (1992).

    CAS  PubMed  Google Scholar 

  26. Han, M., Golden, A., Han, Y. & Sternberg, P. W. C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. Nature 363, 133–140 (1993).

    CAS  PubMed  Google Scholar 

  27. Van Aelst, L., Barr, M., Marcus, S., Polverino, A. & Wigler, M. Complex formation between RAS and RAF and other protein kinases. Proc. Natl Acad. Sci. USA 90, 6213–6217 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Warne, P. H., Viciana, P. R. & Downward, J. Direct interaction of ras and the amino-terminal region of Raf-1 in vitro. Nature 364, 352–355 (1993).

    CAS  PubMed  Google Scholar 

  29. Zhang, X. F. et al. Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 364, 308–313 (1993).

    CAS  PubMed  Google Scholar 

  30. Moodie, S. A., Willumsen, B. M., Weber, M. J. & Wolfman, A. Complexes of Ras.GTP with RAf-1 and mitogen-activated protein kinase. Science 260, 1658–1661 (1993).

    CAS  PubMed  Google Scholar 

  31. Daniels, M. A. et al. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444, 724–729 (2006). Reveals distinct biological outcomes from RAS–MAPK signalling on different subcellular compartments.

    CAS  PubMed  Google Scholar 

  32. Samuels, Y. et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 304, 554 (2004).

    CAS  PubMed  Google Scholar 

  33. D'Adamo, D. R., Novick, S., Kahn, J. M., Leonardi, P. & Pellicer, A. rsc: a novel oncogene with structural and functional homology with the gene family of exchange factors for Ral. Oncogene 14, 1295–1305 (1997).

    CAS  PubMed  Google Scholar 

  34. Gonzalez-Garcia, A. et al. RalGDS is required for tumor formation in a model of skin carcinogenesis. Cancer Cell 7, 219–226 (2005).

    CAS  PubMed  Google Scholar 

  35. Gupta, S. et al. Binding of ras to phosphoinositide 3-kinase p110α is required for ras-driven tumorigenesis in mice. Cell 129, 957–968 (2007).

    CAS  PubMed  Google Scholar 

  36. Lambert, J. M. et al. Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism. Nature Cell Biol. 4, 621–625 (2002).

    CAS  PubMed  Google Scholar 

  37. Kelley, G. G., Reks, S. E., Ondrako, J. M. & Smrcka, A. V. Phospholipase C(epsilon): a novel Ras effector. EMBO J. 20, 743–754 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bai, Y. et al. Crucial role of phospholipase Cepsilon in chemical carcinogen-induced skin tumor development. Cancer Res. 64, 8808–8810 (2004).

    CAS  PubMed  Google Scholar 

  39. Malliri, A. et al. Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumours. Nature 417, 867–871 (2002).

    CAS  PubMed  Google Scholar 

  40. Morrison, D. K. & Cutler, R. E. The complexity of Raf-1 regulation. Curr. Opin. Cell Biol. 9, 174–179 (1997).

    CAS  PubMed  Google Scholar 

  41. Leevers, S. J., Paterson, H. F. & Marshall, C. J. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369, 411–414 (1994).

    CAS  PubMed  Google Scholar 

  42. Stokoe, D., Macdonald, S. G., Cadwallader, K., Symons, M. & Hancock, J. F. Activation of raf as a result of recruitment to the plasma membrane. Science 264, 1463–1467 (1994).

    CAS  PubMed  Google Scholar 

  43. Wright, L. P. & Philips, M. R. Thematic review series: lipid posttranslational modifications. CAAX modification and membrane targeting of Ras. J. Lipid Res. 47, 883–891 (2006).

    CAS  PubMed  Google Scholar 

  44. Casey, P. J., Solski, P. A., Der, C. J. & Buss, J. E. p21ras is modified by a farnesyl isoprenoid. Proc. Natl Acad. Sci. USA 86, 8323–8327 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Seabra, M. C., Reiss, Y., Casey, P. J., Brown, M. S. & Goldstein, J. L. Protein farnesyltransferase and geranylgeranyltransferase share a common α subunit. Cell 65, 429–434 (1991).

    CAS  PubMed  Google Scholar 

  46. Reid, T. S., Terry, K. L., Casey, P. J. & Beese, L. S. Crystallographic analysis of CaaX prenyltransferases complexed with substrates defines rules of protein substrate selectivity. J. Mol. Biol. 343, 417–433 (2004).

    CAS  PubMed  Google Scholar 

  47. Hoffman, G. R., Nassar, N. & Cerione, R. A. Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI. Cell 100, 345–356 (2000).

    CAS  PubMed  Google Scholar 

  48. Silvius, J. R. & l'Heureux, F. Fluorimetric evaluation of the affinities of isoprenylated peptides for lipid bilayers. Biochemistry 33, 3014–3022 (1994).

    CAS  PubMed  Google Scholar 

  49. Ismail, S. A. et al. Regulation of a GDI-like transport system for farnesylated cargo by Arl2/3-GTP. Nature Chem. Biol. 7, 942–949 (2011).

    CAS  Google Scholar 

  50. Chandra, A. et al. The GDI-like solubilizing factor PDEδ sustains the spatial organization and signalling of Ras family proteins. Nature Cell Biol. 18 Dec 2011 (doi:10.1038/ncb2394).

    PubMed  Google Scholar 

  51. Boyartchuk, V. L., Ashby, M. N. & Rine, J. Modulation of Ras and a-factor function by carboxyl-terminal proteolysis. Science 275, 1796–1800 (1997).

    CAS  PubMed  Google Scholar 

  52. Dai, Q. et al. Mammalian prenylcysteine carboxyl methyltransferase is in the endoplasmic reticulum. J. Biol. Chem. 273, 15030–15034 (1998).

    CAS  PubMed  Google Scholar 

  53. Berg, T. J. et al. Splice variants of SmgGDS control small GTPase prenylation and membrane localization. J. Biol. Chem. 285, 35255–35266 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kohl, N. E. et al. Selective inhibition of ras-dependent transformation by a farnesyltransferase inhibitor. Science 260, 1934–1937 (1993).

    CAS  PubMed  Google Scholar 

  55. Lerner, E. C. et al. Ras CAAX peptidomimetic FTI-277 selectively blocks oncogenic Ras signaling by inducing cytoplasmic accumulation of inactive Ras–Raf complexes. J. Biol. Chem. 270, 26802–26806 (1995).

    CAS  PubMed  Google Scholar 

  56. Hancock, J. F., Paterson, H. & Marshall, C. J. A polybasic domain or palmitoylation is required in addition to the CAAX motif to loacalize p21ras to the plasma membrane. Cell 63, 133–139 (1990). Describes the polybasic sequence of KRAS as an alternative membrane-targeting motif.

    CAS  PubMed  Google Scholar 

  57. Resh, M. D. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim. Biophys. Acta 1451, 1–16 (1999).

    CAS  PubMed  Google Scholar 

  58. Buss, J. E. & Sefton, B. M. Direct identification of palmitic acid as the lipid attached to p21ras. Mol. Cell. Biol. 6, 116–122 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hancock, J. F., Magee, A. I., Childs, J. E. & Marshall, C. J. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57, 1167–1177 (1989). Demonstrates that RAS proteins are isoprenylated.

    CAS  PubMed  Google Scholar 

  60. Laude, A. J. & Prior, I. A. Palmitoylation and localisation of RAS isoforms are modulated by the hypervariable linker domain. J. Cell Sci. 121, 421–427 (2008).

    CAS  PubMed  Google Scholar 

  61. Magee, A. I., Gutierrez, L., McKay, I. A., Marshall, C. J. & Hall, A. Dynamic fatty acylation of p21N-ras. EMBO J. 6, 3353–3357 (1987). Shows that palmitoylation of RAS is reversible.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Swarthout, J. T. et al. DHHC9 and GCP16 constitute a human protein fatty acyltransferase with specificity for H- and N-Ras. J. Biol. Chem. 280, 31141–31148 (2005). Characterizes a PAT that modifies RAS.

    CAS  PubMed  Google Scholar 

  63. Lobo, S., Greentree, W. K., Linder, M. E. & Deschenes, R. J. Identification of a Ras palmitoyltransferase in Saccharomyces cerevisiae. J. Biol. Chem. 277, 41268–41273 (2002).

    CAS  PubMed  Google Scholar 

  64. Mitchell, D. A., Vasudevan, A., Linder, M. E. & Deschenes, R. J. Protein palmitoylation by a family of DHHC protein S-acyltransferases. J. Lipid Res. 47, 1118–1127 (2006).

    CAS  PubMed  Google Scholar 

  65. Rocks, O. et al. The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins. Cell 141, 458–471 (2010).

    CAS  PubMed  Google Scholar 

  66. Mitchell, D. A., Farh, L., Marshall, T. K. & Deschenes, R. J. A polybasic domain allows nonprenylated Ras proteins to function in Saccharomyces cerevisiae. J. Biol. Chem. 269, 21540–21546 (1994).

    CAS  PubMed  Google Scholar 

  67. Apolloni, A., Prior, I. A., Lindsay, M., Parton, R. G. & Hancock, J. F. H-ras but not K-ras traffics to the plasma membrane through the exocytic pathway. Mol. Cell. Biol. 20, 2475–2487 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Shahinian, S. & Silvius, J. R. Doubly-lipid-modified protein sequence motifs exhibit long-lived anchorage to lipid bilayer membranes. Biochemistry 34, 3813–3822 (1995).

    CAS  PubMed  Google Scholar 

  69. Schroeder, H. et al. S-Acylation and plasma membrane targeting of the farnesylated carboxyl-terminal peptide of N-ras in mammalian fibroblasts. Biochemistry 36, 13102–13109 (1997).

    CAS  PubMed  Google Scholar 

  70. Silvius, J. R., Bhagatji, P., Leventis, R. & Terrone, D. K-ras4B and prenylated proteins lacking “second signals” associate dynamically with cellular membranes. Mol. Biol. Cell 17, 192–202 (2006). Demonstrates that the association of KRAS with the plasma membrane is reversible and highly dynamic.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Rocks, O. et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307, 1746–1752 (2005).

    CAS  PubMed  Google Scholar 

  72. Goodwin, J. S. et al. Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway. J. Cell Biol. 170, 261–272 (2005). References 71 and 72 establish that the palmitoylation–depalmitoylation of NRAS and HRAS mediates a cycle of transport between the Golgi and plasma membrane.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Mor, A. et al. The lymphocyte function-associated antigen-1 receptor costimulates plasma membrane Ras via phospholipase D2. Nature Cell Biol. 9, 713–719 (2007).

    CAS  PubMed  Google Scholar 

  74. Matallanas, D. et al. Distinct utilization of effectors and biological outcomes resulting from site-specific ras activation: ras functions in lipid rafts and golgi complex are dispensable for proliferation and transformation. Mol. Cell Biol. 26, 100–116 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Mor, A. & Philips, M. R. Compartmentalized Ras/MAPK signaling. Annu. Rev. Immunol. 24, 771–800 (2006).

    CAS  PubMed  Google Scholar 

  76. Baker, T. L., Zheng, H., Walker, J., Coloff, J. L. & Buss, J. E. Distinct rates of palmitate turnover on membrane-bound cellular and oncogenic H-ras. J. Biol. Chem. 278, 19292–19300 (2003).

    CAS  PubMed  Google Scholar 

  77. Dekker, F. J. et al. Small-molecule inhibition of APT1 affects Ras localization and signaling. Nature Chem. Biol. 6, 449–456 (2010).

    CAS  Google Scholar 

  78. Zeidman, R., Jackson, C. S. & Magee, A. I. Protein acyl thioesterases. Mol. Membr. Biol. 26, 32–41 (2009).

    CAS  PubMed  Google Scholar 

  79. Ahearn, I. M. et al. FKBP12 binds to acylated H-ras and promotes depalmitoylation. Mol. Cell 41, 173–185 (2011). Shows that cis trans peptidyl-prolyl isomerization in the C terminus of HRAS regulates depalmitoylation.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lu, K. P., Finn, G., Lee, T. H. & Nicholson, L. K. Prolyl cistrans isomerization as a molecular timer. Nature Chem. Biol. 3, 619–629 (2007).

    CAS  Google Scholar 

  81. Ballester, R., Furth, M. E. & Rosen, O. M. Phorbol ester- and protein kinase C-mediated phosphorylation of the cellular Kirsten ras gene product. J. Biol. Chem. 262, 2688–2695 (1987).

    CAS  PubMed  Google Scholar 

  82. Bivona, T. G. et al. PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol. Cell 21, 481–493 (2006). Reports that phosphorylation of KRAS at Ser181 regulates its subcellular localization and leads to cell death.

    CAS  PubMed  Google Scholar 

  83. McLaughlin, S. & Aderem, A. The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem. Sci. 20, 272–276 (1995).

    CAS  PubMed  Google Scholar 

  84. Madigan, J. P. et al. Regulation of Rnd3 localization and function by protein kinase C α-mediated phosphorylation. Biochem. J. 424, 153–161 (2009).

    CAS  PubMed  Google Scholar 

  85. Kashatus, D. F. et al. RALA and RALBP1 regulate mitochondrial fission at mitosis. Nature Cell Biol. 13, 1108–1115 (2011).

    CAS  PubMed  Google Scholar 

  86. Fivaz, M. & Meyer, T. Reversible intracellular translocation of KRas but not HRas in hippocampal neurons regulated by Ca2+/calmodulin. J. Cell Biol. 170, 429–441 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Jura, N., Scotto-Lavino, E., Sobczyk, A. & Bar-Sagi, D. Differential modification of Ras proteins by ubiquitination. Mol. Cell 21, 679–687 (2006). Establishes monoubiquitylation and diubiquitylation of HRAS and shows the effects of this PTM on the localization on endosomes.

    CAS  PubMed  Google Scholar 

  88. Sasaki, A. T. et al. Ubiquitination of K-Ras enhances activation and facilitates binding to select downstream effectors. Sci. Signal. 4, ra13 (2010).

    Google Scholar 

  89. Xu, L., Lubkov, V., Taylor, L. J. & Bar-Sagi, D. Feedback regulation of Ras signaling by Rabex-5-mediated ubiquitination. Curr. Biol. 20, 1372–1377 (2010). Identifies RABEX5 as the E3 ubiquitin ligase that modifies RAS in a reaction that requires the RAS effector RIN1, suggesting feedback between this modification and signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lander, H. M., Ogiste, J. S., Teng, K. K. & Novogrodsky, A. p21ras as a common signaling target of reactive free radicals and cellular redox stress. J. Biol. Chem. 270, 21195–21198 (1995).

    CAS  PubMed  Google Scholar 

  91. Lander, H. M. et al. Redox regulation of cell signalling. Nature 381, 380–381 (1996). Reveals, through a mass spectroscopy analysis, that Cys118 is the site of redox regulation of RAS and that S -nitrosylation of this Cys promotes guanine nucleotide exchange.

    CAS  PubMed  Google Scholar 

  92. Heo, J. & Campbell, S. L. Mechanism of p21Ras S-nitrosylation and kinetics of nitric oxide-mediated guanine nucleotide exchange. Biochemistry 43, 2314–2322 (2004).

    CAS  PubMed  Google Scholar 

  93. Lander, H. M., Ogiste, J. S., Pearce, S. F., Levi, R. & Novogrodsky, A. Nitric oxide-stimulated guanine nucleotide exchange on p21ras. J. Biol. Chem. 270, 7017–7020 (1995).

    CAS  PubMed  Google Scholar 

  94. Williams, J. G., Pappu, K. & Campbell, S. L. Structural and biochemical studies of p21Ras S-nitrosylation and nitric oxide-mediated guanine nucleotide exchange. Proc. Natl Acad. Sci. USA 100, 6376–6381 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Aktories, K., Schmidt, G. & Just, I. Rho GTPases as targets of bacterial protein toxins. Biol. Chem. 381, 421–426 (2000).

    CAS  PubMed  Google Scholar 

  96. Ganesan, A. K., Vincent, T. S., Olson, J. C. & Barbieri, J. T. Pseudomonas aeruginosa exoenzyme S disrupts Ras-mediated signal transduction by inhibiting guanine nucleotide exchange factor-catalyzed nucleotide exchange. J. Biol. Chem. 274, 21823–21829 (1999).

    CAS  PubMed  Google Scholar 

  97. Just, I., Selzer, J., Hofmann, F., Green, G. A. & Aktories, K. Inactivation of Ras by Clostridium sordellii lethal toxin-catalyzed glucosylation. J. Biol. Chem. 271, 10149–10153 (1996). Reports, for the first time, a bacterial toxin that inactivates RAS by PTM.

    CAS  PubMed  Google Scholar 

  98. Herrmann, C., Ahmadian, M. R., Hofmann, F. & Just, I. Functional consequences of monoglucosylation of Ha-Ras at effector domain amino acid threonine 35. J. Biol. Chem. 273, 16134–16139 (1998).

    CAS  PubMed  Google Scholar 

  99. Schmidt, W. K., Tam, A., Fujimura-Kamada, K. & Michaelis, S. Endoplasmic reticulum membrane localization of Rce1p and Ste24p, yeast proteases involved in carboxyl-terminal CAAX protein processing and amino-terminal a-factor cleavage. Proc. Natl Acad. Sci. USA 95, 11175–11180 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wright, L. P. et al. Topology of mammalian isoprenylcysteine carboxyl methyltransferase determined in live cells with a fluorescent probe. Mol. Cell. Biol. 29, 1826–1833 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lane, K. T. & Beese, L. S. Thematic review series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J. Lipid Res. 47, 681–699 (2006).

    CAS  PubMed  Google Scholar 

  102. Nancy, V., Callebaut, I., El Marjou, A. & de Gunzburg, J. The δ subunit of retinal rod cGMP phosphodiesterase regulates the membrane association of Ras and Rap GTPases. J. Biol. Chem. 277, 15076–15084 (2002).

    CAS  PubMed  Google Scholar 

  103. Figueroa, C., Taylor, J. & Vojtek, A. B. Prenylated Rab acceptor protein is a receptor for prenylated small GTPases. J. Biol. Chem. 276, 28219–28225 (2001).

    CAS  PubMed  Google Scholar 

  104. Paz, A., Haklai, R., Elad-Sfadia, G., Ballan, E. & Kloog, Y. Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene 20, 7486–7493 (2001).

    CAS  PubMed  Google Scholar 

  105. Fehrenbacher, N., Bar-Sagi, D. & Philips, M. Ras/MAPK signaling from endomembranes. Mol. Oncol. 3, 297–307 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Di Fiore, P. P. & De Camilli, P. Endocytosis and signaling: an inseparable partnership. Cell 106, 1–4 (2001).

    CAS  PubMed  Google Scholar 

  107. Zoncu, R. et al. A phosphoinositide switch controls the maturation and signaling properties of APPL endosomes. Cell 136, 1110–1121 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Misaki, R. et al. Palmitoylated Ras proteins traffic through recycling endosomes to the plasma membrane during exocytosis. J. Cell Biol. 191, 23–29 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Omerovic, J., Hammond, D. E., Clague, M. J. & Prior, I. A. Ras isoform abundance and signalling in human cancer cell lines. Oncogene 27, 2754–2762 (2008).

    CAS  PubMed  Google Scholar 

  110. Roy, S., Wyse, B. & Hancock, J. F. H-Ras signaling and K-Ras signaling are differentially dependent on endocytosis. Mol. Cell. Biol. 22, 5128–5140 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Lu, A. et al. A clathrin-dependent pathway leads to KRas signaling on late endosomes en route to lysosomes. J. Cell Biol. 184, 863–879 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Henis, Y. I., Hancock, J. F. & Prior, I. A. Ras acylation, compartmentalization and signaling nanoclusters. Mol. Membr. Biol. 26, 80–92 (2009).

    CAS  PubMed  Google Scholar 

  113. Edidin, M. The state of lipid rafts: from model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32, 257–283 (2003).

    CAS  PubMed  Google Scholar 

  114. Sharma, P. et al. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116, 577–589 (2004).

    CAS  PubMed  Google Scholar 

  115. Prior, I. A., Muncke, C., Parton, R. G. & Hancock, J. F. Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J. Cell Biol. 160, 165–170 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Tian, T. et al. Plasma membrane nanoswitches generate high-fidelity Ras signal transduction. Nature Cell Biol. 9, 905–914 (2007).

    CAS  PubMed  Google Scholar 

  117. Plowman, S. J., Muncke, C., Parton, R. G. & Hancock, J. F. H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proc. Natl Acad. Sci. USA 102, 15500–15505 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Prior, I. A. et al. GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nature Cell Biol. 3, 368–375 (2001).

    CAS  PubMed  Google Scholar 

  119. Belanis, L., Plowman, S. J., Rotblat, B., Hancock, J. F. & Kloog, Y. Galectin-1 is a novel structural component and a major regulator of h-ras nanoclusters. Mol. Biol. Cell 19, 1404–1414 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Elad-Sfadia, G., Haklai, R., Ballan, E., Gabius, H. J. & Kloog, Y. Galectin-1 augments Ras activation and diverts Ras signals to Raf-1 at the expense of phosphoinositide 3-kinase. J. Biol. Chem. 277, 37169–37175 (2002).

    CAS  PubMed  Google Scholar 

  121. Rotblat, B. et al. Three separable domains regulate GTP-dependent association of H-ras with the plasma membrane. Mol. Cell. Biol. 24, 6799–6810 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Prior, I. A. & Hancock, J. F. Compartmentalization of Ras proteins. J. Cell Sci. 114, 1603–1608 (2001).

    CAS  PubMed  Google Scholar 

  123. Jaumot, M., Yan, J., Clyde-Smith, J., Sluimer, J. & Hancock, J. F. The linker domain of the Ha-Ras hypervariable region regulates interactions with exchange factors, Raf-1 and phosphoinositide 3-kinase. J. Biol. Chem. 277, 272–278 (2002).

    CAS  PubMed  Google Scholar 

  124. Roy, S. et al. Individual palmitoyl residues serve distinct roles in H-ras trafficking, microlocalization, and signaling. Mol. Cell. Biol. 25, 6722–6733 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Niv, H., Gutman, O., Kloog, Y. & Henis, Y. I. Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells. J. Cell Biol. 157, 865–872 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Shalom-Feuerstein, R., Cooks, T., Raz, A. & Kloog, Y. Galectin-3 regulates a molecular switch from N-Ras to K-Ras usage in human breast carcinoma cells. Cancer Res. 65, 7292–7300 (2005).

    CAS  PubMed  Google Scholar 

  127. Plowman, S. J., Ariotti, N., Goodall, A., Parton, R. G. & Hancock, J. F. Electrostatic interactions positively regulate K-Ras nanocluster formation and function. Mol. Cell. Biol. 28, 4377–4385 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Vetter, I. R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304 (2001).

    CAS  PubMed  Google Scholar 

  129. Gorfe, A. A., Babakhani, A. & McCammon, J. A. Free energy profile of H-ras membrane anchor upon membrane insertion. Angew. Chem. Int. Ed. Engl. 46, 8234–8237 (2007). Describes computational modelling of insertion of the lipids that modify HRAS into a membrane.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Gorfe, A. A., Hanzal-Bayer, M., Abankwa, D., Hancock, J. F. & McCammon, J. A. Structure and dynamics of the full-length lipid-modified H-Ras protein in a 1,2-dimyristoylglycero-3-phosphocholine bilayer. J. Med. Chem. 50, 674–684 (2007).

    CAS  PubMed  Google Scholar 

  131. Thapar, R., Williams, J. G. & Campbell, S. L. NMR characterization of full-length farnesylated and non-farnesylated H-Ras and its implications for Raf activation. J. Mol. Biol. 343, 1391–1408 (2004).

    CAS  PubMed  Google Scholar 

  132. Abankwa, D. et al. A novel switch region regulates H-ras membrane orientation and signal output. EMBO J. 27, 727–735 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Abankwa, D., Gorfe, A. A., Inder, K. & Hancock, J. F. Ras membrane orientation and nanodomain localization generate isoform diversity. Proc. Natl Acad. Sci. USA 107, 1130–1135 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Willumsen, B. M., Cox, A. D., Solski, P. A., Der, C. J. & Buss, J. E. Novel determinants of H-Ras plasma membrane localization and transformation. Oncogene 13, 1901–1909 (1996).

    CAS  PubMed  Google Scholar 

  135. Philips, M. R. & Cox, A. D. Geranylgeranyltransferase I as a target for anti-cancer drugs. J. Clin. Invest. 117, 1223–1225 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Winter-Vann, A. M. & Casey, P. J. Post-prenylation-processing enzymes as new targets in oncogenesis. Nature Rev. Cancer 5, 405–412 (2005).

    CAS  Google Scholar 

  137. Basso, A. D., Kirschmeier, P. & Bishop, W. R. Thematic review series: lipid posttranslational modifications. Farnesyl transferase inhibitors. J. Lipid Res. 47, 15–31 (2006).

    CAS  PubMed  Google Scholar 

  138. Whyte, D. B. et al. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J. Biol. Chem. 272, 14459–14464 (1997). Shows that, in the presence of an FTI, oncogenic RAS could be alternatively prenylated by GGTase I.

    CAS  PubMed  Google Scholar 

  139. Kazi, A. et al. Blockade of protein geranylgeranylation inhibits Cdk2-dependent p27Kip1 phosphorylation on Thr187 and accumulates p27Kip1 in the nucleus: implications for breast cancer therapy. Mol. Cell. Biol. 29, 2254–2263 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Winter-Vann, A. M. et al. A small-molecule inhibitor of isoprenylcysteine carboxyl methyltransferase with antitumor activity in cancer cells. Proc. Natl Acad. Sci. USA 102, 4336–4341 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Schlitzer, M., Winter-Vann, A. & Casey, P. J. Non-peptidic, non-prenylic inhibitors of the prenyl protein-specific protease Rce1. Bioorg. Med. Chem. Lett. 11, 425–427 (2001).

    CAS  PubMed  Google Scholar 

  142. Bergo, M. O. et al. Inactivation of Icmt inhibits transformation by oncogenic K-Ras and B-Raf. J. Clin. Invest. 113, 539–550 (2004). Shows that modification of KRAS by ICMT is required for its transforming activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Wahlstrom, A. M. et al. Rce1 deficiency accelerates the development of K-RAS-induced myeloproliferative disease. Blood 109, 763–768 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Philips.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Proteome-Wide PTM Statistics Curator

FURTHER INFORMATION

Kevin Haigis's homepage

Mark R. Philips's homepage

Glossary

Costello syndrome

A rare genetic disorder, similar to Noonan syndrome and cardio-facial-cutaneous syndrome, that is caused by an activating mutation in the gene encoding HRAS.

Noonan syndrome

An autosomal-dominant congenital disease that results in various developmental defects, including, but not limited to, dwarfism, pulmonary valve stenosis and learning disabilities. More than half of the cases are caused by mutations in the gene encoding SHP2 and the others include gain-of-function mutations in the genes for KRAS or Son of sevenless homologue 1, placing Noonan syndrome in the RASopathy category.

Cardio-facio-cutaneous syndrome

A rare genetic disorder that is characterized by a distinctive facial appearance, congenital cardiac malformations and learning difficulties. Like Noonan syndrome, it is a RASopathy caused by gain-of-function mutations, but in this case in the genes encoding KRAS, BRAF or MAPK/ERK kinase (MEK).

Nitrosylation

The modification of a Cys side chain sulphhydryl group with a nitrosyl group derived from nitric oxide.

G domain

The first 169 amino acids of RAS proteins, which fold into a globular, hydrophilic protein that contains a guanine-nucleotide (G)-binding site.

Heterotrimeric G proteins

Members of the large subfamily of guanine-nucleotide-binding proteins that signal downstream of receptors that span the plasma membrane seven times. Composed of three subunits designated α, β and γ, of which the α-subunit binds nucleotide.

SH2 domain

(SRC homology 2 domain). One of several types of domain found in numerous signalling molecules that bind to phosphotyrosine in the context of adjacent amino acids.

Cistrans isomerization

Transformation, usually by an enzyme, of a peptide bond, or more commonly a peptidyl-prolyl bond, from a cis to a trans conformation or vice versa.

Myristoyl–electrostatic switch

A term used to describe the mechanism whereby the membrane association of N-myristoylated proteins, such as myristoylated Ala-rich C-kinase substrate (MARCKS), is modulated by phosphorylation of Ser residues in an adjacent polybasic region.

Polytopic membrane proteins

Transmembrane proteins that span cellular membranes multiple times.

Early endosomes

Dynamic tubulovesicular organelles that form from the uncoating and fusing of clathrin-coated vesicles and represent the earliest element of the endocytic cycle.

Late endosomes

Non-tubular organelles that mature from early endosomes, are partially acidified and fuse with primary lysosomes.

Multivesicular bodies

Late endosomes into which vesicles have budded off to form a cluster of smaller vesicles within the larger endosome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahearn, I., Haigis, K., Bar-Sagi, D. et al. Regulating the regulator: post-translational modification of RAS. Nat Rev Mol Cell Biol 13, 39–51 (2012). https://doi.org/10.1038/nrm3255

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3255

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing