Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Motor cortex — to act or not to act?

Abstract

The motor cortex is a large frontal structure in the cerebral cortex of eutherian mammals. A vast array of evidence implicates the motor cortex in the volitional control of motor output, but how does the motor cortex exert this 'control'? Historically, ideas regarding motor cortex function have been shaped by the discovery of cortical 'motor maps' — that is, ordered representations of stimulation-evoked movements in anaesthetized animals. Volitional control, however, entails the initiation of movements and the ability to suppress undesired movements. In this article, we highlight classic and recent findings that emphasize that motor cortex neurons have a role in both processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two opposing views of the motor cortex.
Figure 2: From motor cortex to muscle output: anatomy and functional connectivity.
Figure 3: Motor cortex activity during movement.
Figure 4: Movement patterns after motor cortex inactivation.
Figure 5: The neurophysiology of not moving.

Similar content being viewed by others

References

  1. Fritsch, G. & Hitzig, E. Über die elektrische Erregbarkeit des Grosshirns [German]. Arch. Anat. Physiol. wiss. Med. 37, 300–332 (1870).

    Google Scholar 

  2. Ferrier, D. Experiments on the brain of monkeys — No. I. Proc. R. Soc. Lond. 23, 409–430 (1874).

    Google Scholar 

  3. Leyton, A. S. F. & Sherrington, C. S. Observations on the excitable cortex of the chimpanzee, orang-utan, and gorilla. Q. J. Exp. Physiol. 11, 135–222 (1917).

    Article  Google Scholar 

  4. Graziano, M. S. Taylor, C. S. & Moore, T. Complex movements evoked by microstimulation of precentral cortex. Neuron 34, 841–851 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Penfield, W. & Rasmussen, T. The Cerebral Cortex of Man (New York: The Macmillan Company, 1952).

    Google Scholar 

  6. Asanuma, H. & Rosén, I. Topographical organization of cortical efferent zones projecting to distal forelimb muscles in the monkey. Exp. Brain Res. 14, 243–256 (1972).

    Article  CAS  PubMed  Google Scholar 

  7. Ikeda, A. et al. Movement-related potentials associated with bilateral simultaneous and unilateral movements recorded from human supplementary motor area. Electroencephalogr. Clin. Neurophysiol. 95, 323–334 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Lüders, H. O., Dinner, D. S., Morris, H. H., Wyllie, E. & Comair, Y. G. Cortical electrical stimulation in humans. The negative motor areas. Adv. Neurol. 67, 115–129 (1995).

    PubMed  Google Scholar 

  9. Nii, Y., Uematsu, S., Lesser, R. P. & Gordon, B. Does the central sulcus divide motor and sensory functions? Cortical mapping of human hand areas as revealed by electrical stimulation through subdural grid electrodes. Neurology 46, 360–367 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Mikuni, N. et al. Evidence for a wide distribution of negative motor areas in the perirolandic cortex. Clin. Neurophysiol. 117, 33–40 (2006).

    Article  PubMed  Google Scholar 

  11. Filevich, E., Kühn, S. & Haggard, P. Negative motor phenomena in cortical stimulation: implications for inhibitory control of human action. Cortex 48, 1251–1261 (2012).

    Article  PubMed  Google Scholar 

  12. Neafsey, E. J. et al. The organization of the rat motor cortex: a microstimulation mapping study. Brain Res. 11, 77–96 (1986).

    Article  Google Scholar 

  13. Ayling, O. G. S., Harrison, T. C., Boyd, J. D., Goroshkov, A. & Murphy, T. H. Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice. Nat. Methods 6, 219–224 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Harrison, T. C., Ayling, O. G. S. & Murphy, T. H. Distinct cortical circuit mechanisms for complex forelimb movement and motor map topography. Neuron 74, 397–409 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Lemon, R. N. An enduring map of the motor cortex. Exp. Physiol. 93, 798–802 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Brecht, M. et al. Organization of rat vibrissa motor cortex and adjacent areas according to cytoarchitectonics, microstimulation, and intracellular stimulation of identified cells. J. Comp. Neurol. 479, 360–373 (2004).

    Article  PubMed  Google Scholar 

  17. Matyas, F. et al. Motor control by sensory cortex. Science 330, 1240–1243 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Molnár, Z. et al. Evolution and development of the mammalian cerebral cortex. Brain. Behav. Evol. 83, 126–139 (2014).

    Article  PubMed  Google Scholar 

  19. Hall, R. D. & Lindholm, E. P. Organization of motor and somatosensory neocortex in the albino rat. Brain Res. 66, 23–38 (1974).

    Article  Google Scholar 

  20. Nudo, R. J. & Frost, S. B. in Evolution of nervous systems (eds Kass, J. H.) 373–395 (Academic Press, 2007).

    Book  Google Scholar 

  21. Kaas, J. H. Evolution of somatosensory and motor cortex in primates. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 281, 1148–1156 (2004).

    Article  PubMed  Google Scholar 

  22. Frost, S. B., Milliken, G. W., Plautz, E. J., Masterton, R. B. & Nudo, R. J. Somatosensory and motor representations in cerebral cortex of a primitive mammal (Monodelphis domestica): a window into the early evolution of sensorimotor cortex. J. Comp. Neurol. 421, 29–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Karlen, S. J. & Krubitzer, L. The functional and anatomical organization of marsupial neocortex: evidence for parallel evolution across mammals. Prog. Neurobiol. 82, 122–141 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gioanni, Y. & Lamarche, M. A reappraisal of rat motor cortex organization by intracortical microstimulation. Brain Res. 344, 49–61 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. Zilles, K. & Wree, A. in The Rat Nevous System (ed. Paxinos, G.) 649–685 (Academic Press, 1995).

    Google Scholar 

  26. Brodmann, K. Vergleichende Lokalisationslehre der Großhirnrinde: in ihren Prinzipien dargestellt auf Grund des Zellenbaues [German] (J. A. Barth, 1909).

    Google Scholar 

  27. Yamawaki, N. et al. A genuine layer 4 in motor cortex with prototypical synaptic circuit connectivity. eLife 4, e05422 (2014).

    Article  Google Scholar 

  28. Nudo, R. J. & Masterton, R. B. Descending pathways to the spinal cord, III: sites of origin of the corticospinal tract. J. Comp. Neurol. 296, 559–583 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Rathelot, J.-A. & Strick, P. L. Muscle representation in the macaque motor cortex: an anatomical perspective. Proc. Natl Acad. Sci. USA 103, 8257–8262 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sreenivasan, V. et al. Movement initiation signals in mouse whisker motor cortex. Neuron 92, 1368–1382 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ferezou, I. et al. Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron 56, 907–923 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Academic Press, 1982).

    Google Scholar 

  33. Brecht, M. Movement, confusion, and orienting in frontal cortices. Neuron 72, 193–196 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Barthas, F. & Kwan, A. C. Secondary motor cortex: where 'sensory' meets 'motor' in the rodent frontal cortex. Trends Neurosci. 40, 181–193 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Murakami, M., Vicente, M. I., Costa, G. M. & Mainen, Z. F. Neural antecedents of self-initiated actions in secondary motor cortex. Nat. Neurosci. 17, 1574–1582 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Murakami, M., Shteingart, H., Loewenstein, Y. & Mainen, Z. F. Distinct sources of deterministic and stochastic components of action timing decisions in rodent frontal cortex. Neuron 94, 908–919.e7 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Reep, R. L., Goodwin, G. S. & Corwin, J. V. Topographic organization in the corticocortical connections of medial agranular cortex in rats. J. Comp. Neurol. 294, 262–280 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Reep, R. L., Corwin, J. V., Hashimoto, A. & Watson, R. T. Efferent connections of the rostral portion of medial agranular cortex in rats. Brain Res. Bull. 19, 203–221 (1987).

    Article  CAS  PubMed  Google Scholar 

  39. Sul, J. H., Jo, S., Lee, D. & Jung, M. W. Role of rodent secondary motor cortex in value-based action selection. Nat. Neurosci. 14, 1202–1208 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brody, C. D. & Hanks, T. D. Neural underpinnings of the evidence accumulator. Curr. Opin. Neurobiol. 37, 149–157 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Erlich, J. C., Bialek, M. & Brody, C. D. A cortical substrate for memory-guided orienting in the rat. Neuron 72, 330–343 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Erlich, J. C., Brunton, B. W., Duan, C. A., Hanks, T. D. & Brody, C. D. Distinct effects of prefrontal and parietal cortex inactivations on an accumulation of evidence task in the rat. eLife http://dx.doi.org/10.7554/eLife.05457 (2015).

  43. Hanks, T. D. et al. Distinct relationships of parietal and prefrontal cortices to evidence accumulation. Nature 520, 220–223 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lemon, R. N. Descending pathways in motor control. Annu. Rev. Neurosci. 31, 195–218 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. O'Donoghue, D. L., Kartje-Tillotson, G. & Castro, A. J. Forelimb motor cortical projections in normal rats and after neonatal hemicerebellectomy: an anatomical study based upon the axonal transport of WGA/HRP. J. Comp. Neurol. 256, 274–283 (1987).

    Article  CAS  PubMed  Google Scholar 

  46. Grinevich, V., Brecht, M. & Osten, P. Monosynaptic pathway from rat vibrissa motor cortex to facial motor neurons revealed by lentivirus-based axonal tracing. J. Neurosci. 25, 8250–8258 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sreenivasan, V., Karmakar, K., Rijli, F. M. & Petersen, C. C. H. Parallel pathways from motor and somatosensory cortex for controlling whisker movements in mice. Eur. J. Neurosci. 41, 354–367 (2015).

    Article  PubMed  Google Scholar 

  48. Rouiller, E. M., Moret, V. & Liang, F. Comparison of the connectional properties of the two forelimb areas of the rat sensorimotor cortex: support for the presence of a premotor or supplementary motor cortical area. Somatosens. Mot. Res. 10, 269–289 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Deschênes, M. et al. Inhibition, not excitation, drives rhythmic whisking. Neuron 90, 374–387 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kuypers, H. G. New look at the organization of the motor system. Prog. Brain Res. 57, 381–403 (1982).

    Article  CAS  PubMed  Google Scholar 

  51. Fetz, E. E., Perlmutter, S. I. & Prut, Y. Functions of mammalian spinal interneurons during movement. Curr. Opin. Neurobiol. 10, 699–707 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Rathelot, J.-A. & Strick, P. L. Subdivisions of primary motor cortex based on cortico-motoneuronal cells. Proc. Natl Acad. Sci. USA 106, 918–923 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Heffner, R. & Masterton, B. Variation in form of the pyramidal tract and its relationship to digital dexterity. Brain. Behav. Evol. 12, 161–200 (1975).

    Article  CAS  PubMed  Google Scholar 

  54. Nakajima, K., Maier, M. A., Kirkwood, P. A. & Lemon, R. N. Striking differences in transmission of corticospinal excitation to upper limb motoneurons in two primate species. J. Neurophysiol. 84, 698–709 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Osten, P. & Margrie, T. W. Mapping brain circuitry with a light microscope. Nat. Methods 10, 515–523 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hooks, B. M. et al. Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex. J. Neurosci. 33, 748–760 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jeong, M. et al. Comparative three-dimensional connectome map of motor cortical projections in the mouse brain. Sci. Rep. 6, 20072 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Calabresi, P., Picconi, B., Tozzi, A., Ghiglieri, V. & Di Filippo, M. Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat. Neurosci. 17, 1022–1030 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Kress, G. J. et al. Convergent cortical innervation of striatal projection neurons. Nat. Neurosci. 16, 665–667 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cui, G. et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494, 238–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tecuapetla, F., Jin, X., Lima, S. Q. & Costa, R. M. Complementary contributions of striatal projection pathways to action initiation and execution. Cell 166, 703–715 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Grillner, S. & Robertson, B. The basal ganglia downstream control of brainstem motor centres — an evolutionarily conserved strategy. Curr. Opin. Neurobiol. 33, 47–52 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Cheney, P. D. & Fetz, E. E. Comparable patterns of muscle facilitation evoked by individual corticomotoneuronal (CM) cells and by single intracortical microstimuli in primates: evidence for functional groups of CM cells. J. Neurophysiol. 53, 786–804 (1985).

    Article  CAS  PubMed  Google Scholar 

  64. Lemon, R., Muir, R. & Mantel, G. The effects upon the activity of hand and forearm muscles of intracortical stimulation in the vicinity of corticomotor neurones in the conscious monkey. Exp. Brain Res. 66, 621–637 (1987).

    Article  CAS  PubMed  Google Scholar 

  65. Cheney, P. D., Fetz, E. E. & Palmer, S. S. Patterns of facilitation and suppression of antagonist forelimb muscles from motor cortex sites in the awake monkey. J. Neurophysiol. 53, 805–820 (1985).

    Article  CAS  PubMed  Google Scholar 

  66. Ebbesen, C. L., Doron, G., Lenschow, C. & Brecht, M. Vibrissa motor cortex activity suppresses contralateral whisking behavior. Nat. Neurosci. 20, 82–89 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Hill, D. N., Curtis, J. C., Moore, J. D. & Kleinfeld, D. Primary motor cortex reports efferent control of vibrissa motion on multiple timescales. Neuron 72, 344–356 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Moore, J. D. et al. Hierarchy of orofacial rhythms revealed through whisking and breathing. Nature 497, 205–210 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Buys, E. J., Lemon, R. N., Mantel, G. W. & Muir, R. B. Selective facilitation of different hand muscles by single corticospinal neurones in the conscious monkey. J. Physiol. 381, 529–549 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lemon, R. N., Mantel, G. W. & Muir, R. B. Corticospinal facilitation of hand muscles during voluntary movement in the conscious monkey. J. Physiol. 381, 497–527 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Davidson, A. G., Chan, V., O'Dell, R. & Schieber, M. H. Rapid changes in throughput from single motor cortex neurons to muscle activity. Science 318, 1934–1937 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Ramanathan, D., Conner, J. M. & Tuszynski, M. H. A form of motor cortical plasticity that correlates with recovery of function after brain injury. Proc. Natl Acad. Sci. USA 103, 11370–11375 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Stoney, S. D., Thompson, W. D. & Asanuma, H. Excitation of pyramidal tract cells by intracortical microstimulation: effective extent of stimulating current. J. Neurophysiol. 31, 659–669 (1968).

    Article  PubMed  Google Scholar 

  74. Tehovnik, E. J., Tolias, A. S., Sultan, F., Slocum, W. M. & Logothetis, N. K. Direct and indirect activation of cortical neurons by electrical microstimulation. J. Neurophysiol. 96, 512–521 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Histed, M. H., Bonin, V. & Reid, R. C. Direct activation of sparse, distributed populations of cortical neurons by electrical microstimulation. Neuron 63, 508–522 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shenoy, K. V., Sahani, M. & Churchland, M. M. Cortical control of arm movements: a dynamical systems perspective. Annu. Rev. Neurosci. 36, 337–359 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Georgopoulos, A. P., Kalaska, J. F., Caminiti, R. & Massey, J. T. On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J. Neurosci. 2, 1527–1537 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kalaska, J. F., Cohen, D. A., Hyde, M. L. & Prud'homme, M. A comparison of movement direction-related versus load direction-related activity in primate motor cortex, using a two-dimensional reaching task. J. Neurosci. 9, 2080–2102 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Evarts, E. V. Relation of pyramidal tract activity to force exerted during voluntary movement. J. Neurophysiol. 31, 14–27 (1968).

    Article  CAS  PubMed  Google Scholar 

  80. Cheney, P. D. & Fetz, E. E. Functional classes of primate corticomotoneuronal cells and their relation to active force. J. Neurophysiol. 44, 773–791 (1980).

    Article  CAS  PubMed  Google Scholar 

  81. Fetz, E. E. Are movement parameters recognizable coded in the activity of single neurons? Behav. Brain Sci. 15, 679–690 (1992).

    Google Scholar 

  82. Kaufman, M. T., Churchland, M. M. & Shenoy, K. V. The roles of monkey M1 neuron classes in movement preparation and execution. J. Neurophysiol. 110, 817–825 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Armstrong, D. M. & Drew, T. Discharges of pyramidal tract and other motor cortical neurones during locomotion in the cat. J. Physiol. 346, 471–495 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Drew, T., Jiang, W. & Widajewicz, W. Contributions of the motor cortex to the control of the hindlimbs during locomotion in the cat. Brain Res. Rev. 40, 178–191 (2002).

    Article  PubMed  Google Scholar 

  85. Beloozerova, I. N., Farrell, B. J., Sirota, M. G. & Prilutsky, B. I. Differences in movement mechanics, electromyographic, and motor cortex activity between accurate and nonaccurate stepping. J. Neurophysiol. 103, 2285–2300 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Drew, T. Motor cortical activity during voluntary gait modifications in the cat. I. Cells related to the forelimbs. J. Neurophysiol. 70, 179–199 (1993).

    Article  CAS  PubMed  Google Scholar 

  87. Beloozerova, I. N. & Sirota, M. G. The role of the motor cortex in the control of vigour of locomotor movements in the cat. J. Physiol. 461, 27–46 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ölveczky, B. P. Motoring ahead with rodents. Curr. Opin. Neurobiol. 21, 571–578 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Fisher, S. P. et al. Stereotypic wheel running decreases cortical activity in mice. Nat. Commun. 7, 13138 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Barthó, P. et al. Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. J. Neurophysiol. 92, 600–608 (2004).

    Article  PubMed  Google Scholar 

  91. Gentet, L. J., Avermann, M., Matyas, F., Staiger, J. F. & Petersen, C. C. Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65, 422–435 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Sjulson, L. L., Hjerling-Leffler, J., Rudy, B. & Fishell, G. Reforming our ideas about cell types and spike waveforms. J. Neurosci http://www.jneurosci.org/content/31/40/14235/tab-article-info#reforming-our-ideas-about-cell-types-and-spike-waveforms (2011).

  93. Suter, B. A., Migliore, M. & Shepherd, G. M. G. Intrinsic electrophysiology of mouse corticospinal neurons: a class-specific triad of spike-related properties. Cereb. Cortex 23, 1965–1977 (2013).

    Article  PubMed  Google Scholar 

  94. Schiemann, J. et al. Cellular mechanisms underlying behavioral state-dependent bidirectional modulation of motor cortex output. Cell Rep. 11, 1319–1330 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gao, P., Bermejo, R. & Zeigler, H. P. Whisker deafferentation and rodent whisking patterns: behavioral evidence for a central pattern generator. J. Neurosci. 21, 5374–5380 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Moore, J. D. et al. Hierarchy of orofacial rhythms revealed through whisking and breathing. Nature 497, 205–210 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dörfl, J. The musculature of the mystacial vibrissae of the white mouse. J. Anat. 135, 147–154 (1982).

    PubMed  PubMed Central  Google Scholar 

  98. Welker, W. I. Analysis of sniffing of the albino rat. Behaviour 22, 223–244 (1964).

    Article  Google Scholar 

  99. Sachdev, R. N. S., Sato, T. & Ebner, F. F. Divergent movement of adjacent whiskers. J. Neurophysiol. 87, 1440–1448 (2002).

    Article  PubMed  Google Scholar 

  100. Carvell, G. E., Miller, S. A. & Simons, D. J. The relationship of vibrissal motor cortex unit activity to whisking in the awake rat. Somatosens. Mot. Res. 13, 115–127 (1996).

    Article  CAS  PubMed  Google Scholar 

  101. Friedman, W. A., Zeigler, H. P. & Keller, A. Vibrissae motor cortex unit activity during whisking. J. Neurophysiol. 107, 551–563 (2012).

    Article  PubMed  Google Scholar 

  102. Gerdjikov, T. V., Haiss, F., Rodriguez-Sierra, O. E. & Schwarz, C. Rhythmic whisking area (RW) in rat primary motor cortex: an internal monitor of movement-related signals? J. Neurosci. 33, 14193–14204 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kleinfeld, D., Berg, R. W. & O'Connor, S. M. Anatomical loops and their electrical dynamics in relation to whisking by rat. Somatosens. Mot. Res. 16, 69–88 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Isomura, Y., Harukuni, R., Takekawa, T., Aizawa, H. & Fukai, T. Microcircuitry coordination of cortical motor information in self-initiation of voluntary movements. Nat. Neurosci. 12, 1586–1593 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Estebanez, L., Hoffmann, D., Voigt, B. C. & Poulet, J. F. A. Parvalbumin expressing GABA-ergic neurons in primary motor cortex signal reaching. Cell Rep. 20, 308–318 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Vigneswaran, G., Kraskov, A. & Lemon, R. Large identified pyramidal cells in macaque motor and premotor cortex exhibit 'thin spikes': implications for cell type classification. J. Neurosci. 31, 14235–14242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zaitsev, A. V., Povysheva, N. V., Gonzalez-Burgos, G. & Lewis, D. A. Electrophysiological classes of layers 2–3 pyramidal cells in monkey prefrontal cortex. J. Neurophysiol. 108, 595–609 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Li, N., Chen, T., Guo, Z. V., Gerfen, C. R. & Svoboda, K. A motor cortex circuit for motor planning and movement. Nature 519, 51–56 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Chen, T.-W., Li, N., Daie, K. & Svoboda, K. A. Map of anticipatory activity in mouse motor cortex. Neuron 94, 866–879.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Travers, J. B., Dinardo, L. A. & Karimnamazi, H. Motor and premotor mechanisms of licking. Neurosci. Biobehav. Rev. 21, 631–647 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Guo, Z. et al. Flow of cortical activity underlying a tactile decision in mice. Neuron 81, 179–194 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Peters, A. J., Lee, J., Hedrick, N. G., O'Neil, K. & Komiyama, T. Reorganization of corticospinal output during motor learning. Nat. Neurosci. 20, 1133–1141 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kolb, B. Functions of the frontal cortex of the rat: a comparative review. Brain Res. 320, 65–98 (1984).

    Article  CAS  PubMed  Google Scholar 

  114. Franz, S. I. & Lashley, K. S. The retention of habits by the rat after destruction of the frontal portion of the cerebrum. Psychobiology 1, 3–18 (1917).

    Article  Google Scholar 

  115. Semba, K. & Komisaruk, B. R. Neural substrates of two different rhythmical vibrissal movements in the rat. Neuroscience 12, 761–774 (1984).

    Article  CAS  PubMed  Google Scholar 

  116. Goulding, M. Circuits controlling vertebrate locomotion: moving in a new direction. Nat. Rev. Neurosci. 10, 507–518 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kiehn, O. Locomotor circuits in the mammalian spinal cord. Annu. Rev. Neurosci. 29, 279–306 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Bourane, S. et al. Identification of a spinal circuit for light touch and fine motor control. Cell 160, 503–515 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Whelan, P. Control of locomotion in the decerebrate cat. Prog. Neurobiol. 49, 481–515 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. Brown, T. G. The intrinsic factors in the act of progression in the mammal. Proc. R. Soc. Lond. B 84, 308–319 (1911).

    Article  Google Scholar 

  121. Schieber, M. H. & Poliakov, A. V. Partial inactivation of the primary motor cortex hand area: effects on individuated finger movements. J. Neurosci. 18, 9038–9054 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Laplane, D., Talairach, J., Meininger, V., Bancaud, J. & Bouchareine, A. Motor consequences of motor area ablations in man. J. Neurol. Sci. 31, 29–49 (1977).

    Article  CAS  PubMed  Google Scholar 

  123. Barnes, M. P. & Johnson, G. R. Upper Motor Neurone Syndrome and Spasticity. Clinical Management and Neurophysiology (Cambridge Univ. Press, 2008).

    Book  Google Scholar 

  124. Sasaki, S. et al. Dexterous finger movements in primate without monosynaptic corticomotoneuronal excitation. J. Neurophysiol. 92, 3142–3147 (2004).

    Article  PubMed  Google Scholar 

  125. Rouiller, E. M. et al. Dexterity in adult monkeys following early lesion of the motor cortical hand area: the role of cortex adjacent to the lesion. Eur. J. Neurosci. 10, 729–740 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Lawrence, D. G. & Kuypers, H. G. The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain 91, 1–14 (1968).

    Article  CAS  PubMed  Google Scholar 

  127. Gao, P., Hattox, A. M., Jones, L. M., Keller, A. & Zeigler, H. P. Whisker motor cortex ablation and whisker movement patterns. Somatosens. Mot. Res. 20, 191–198 (2003).

    Article  PubMed  Google Scholar 

  128. Stoltz, S., Humm, J. L. & Schallert, T. Cortical injury impairs contralateral forelimb immobility during swimming: a simple test for loss of inhibitory motor control. Behav. Brain Res. 106, 127–132 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Martin, J. H. & Ghez, C. Impairments in reaching during reversible inactivation of the distal forelimb representation of the motor cortex in the cat. Neurosci. Lett. 133, 61–64 (1991).

    Article  CAS  PubMed  Google Scholar 

  130. Martin, J. H. & Ghez, C. Differential impairments in reaching and grasping produced by local inactivation within the forelimb representation of the motor cortex in the cat. Exp. Brain Res. 94, 429–443 (1993).

    CAS  PubMed  Google Scholar 

  131. Castro, A. J. The effects of cortical ablations on digital usage in the rat. Brain Res. 37, 173–185 (1972).

    Article  CAS  PubMed  Google Scholar 

  132. Alaverdashvili, M. & Whishaw, I. Q. Motor cortex stroke impairs individual digit movement in skilled reaching by the rat. Eur. J. Neurosci. 28, 311–322 (2008).

    Article  PubMed  Google Scholar 

  133. Guo, J.-Z. et al. Cortex commands the performance of skilled movement. eLife 4, 1–18 (2015).

    Article  Google Scholar 

  134. Otchy, T. M. et al. Acute off-target effects of neural circuit manipulations. Nature 528, 358–363 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Südhof, T. C. Reproducibility: experimental mismatch in neural circuits. Nature 528, 338–339 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Zagha, E., Ge, X. & McCormick, D. A. Competing neural ensembles in motor cortex gate goal-directed motor output. Neuron 88, 565–577 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Huber, D. et al. Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature 484, 473–478 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sachidhanandam, S., Sreenivasan, V., Kyriakatos, A., Kremer, Y. & Petersen, C. C. H. Membrane potential correlates of sensory perception in mouse barrel cortex. Nat. Neurosci. 16, 1671–1677 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Dalley, J. W., Cardinal, R. N. & Robbins, T. W. Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci. Biobehav. Rev. 28, 771–784 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Kim, S. & Lee, D. Prefrontal cortex and impulsive decision making. Biol. Psychiatry 69, 1140–1146 (2011).

    Article  PubMed  Google Scholar 

  141. Miller, E. K. The prefrontal cortex and cognitive control. Nat. Rev. Neurosci. 1, 59–65 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. Mayer-Gross, W., Slater, E. & Roth, M. Clinical Psychiatry (Cassell & Co., 1954).

    Google Scholar 

  143. Narayanan, N. S. & Laubach, M. Top-down control of motor cortex ensembles by dorsomedial prefrontal cortex. Neuron 52, 921–931 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kawai, R. et al. Motor cortex is required for learning but not for executing a motor skill. Neuron 86, 800–812 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Peters, A. J., Chen, S. X. & Komiyama, T. Emergence of reproducible spatiotemporal activity during motor learning. Nature 510, 263–267 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Quallo, M. M., Kraskov, A. & Lemon, R. N. The activity of primary motor cortex corticospinal neurons during tool use by macaque monkeys. J. Neurosci. 32, 17351–17364 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Dushanova, J. & Donoghue, J. Neurons in primary motor cortex engaged during action observation. Eur. J. Neurosci. 31, 386–398 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Tkach, D., Reimer, J. & Hatsopoulos, N. G. Congruent activity during action and action observation in motor cortex. J. Neurosci. 27, 13241–13250 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kraskov, A et al. Corticospinal mirror neurons. Philos. Trans. R. Soc. Lond. B Biol. Sci. http://dx.doi.org/10.1098/rstb.2013.0174 (2014).

  150. Vigneswaran, G., Philipp, R., Lemon, R. N. & Kraskov, A. M1 corticospinal mirror neurons and their role in movement suppression during action observation. Curr. Biol. 23, 236–243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Goard, M. J., Pho, G. N., Woodson, J. & Sur, M. Distinct roles of visual, parietal, and frontal motor cortices in memory-guided sensorimotor decisions. eLife 5, e13764 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Kleinfeld, D., Sachdev, R. N. S., Merchant, L. M., Jarvis, M. R. & Ebner, F. F. Adaptive filtering of vibrissa input in motor cortex of rat. Neuron 34, 1021–1034 (2002).

    Article  CAS  PubMed  Google Scholar 

  153. Kilner, J. M. & Lemon, R. N. What we know currently about mirror neurons. Curr. Biol. 23, R1057–R1062 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mountcastle, V. Modalily and topographic properties of single neurons of cat's somatic sensory system. J. Neurophysiol. 20, 408–434 (1956).

    Article  Google Scholar 

  155. Hubel, D. H. & Wiesel, T. N. Receptive fields of single neurones in the cat's striate cortex. J. Physiol. 148, 574–591 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Mountcastle, V. in The Mindful Brain (eds Edelman, G. & Mountcastle, V. B.) 7–50 (MIT Press, 1978).

    Google Scholar 

  157. Sanes, J. N. & Donoghue, J. P. Plasticity and primary motor cortex. Annu. Rev. Neurosci. 23, 393–415 (2000).

    Article  CAS  PubMed  Google Scholar 

  158. Laubach, M., Caetano, M. S. & Narayanan, N. S. Mistakes were made: neural mechanisms for the adaptive control of action initiation by the medial prefrontal cortex. J. Physiol. Paris 109, 104–117 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Harlow, J. M. Recovery from the passage of an iron bar through the head (D. Clapp, 1868).

    Google Scholar 

  160. Harlow, J. M. Passage of an iron rod through the head. J. Neuropsychiatry Clin. Neurosci. 11, 281–283 (1848).

    Article  Google Scholar 

  161. Shadmehr, R. Distinct neural circuits for control of movement vs. holding still. J. Neurophysiol. 117, 1431–1460 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Schall, J. D., Stuphorn, V. & Brown, J. W. Monitoring and control of action by the frontal lobes. Neuron 36, 309–322 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Wardak, C. The role of the supplementary motor area in inhibitory control in monkeys and humans. J. Neurosci. 31, 5181–5183 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  164. Nachev, P., Kennard, C. & Husain, M. Functional role of the supplementary and pre-supplementary motor areas. Nat. Rev. Neurosci. 9, 856–869 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Filevich, E., Kühn, S. & Haggard, P. Intentional inhibition in human action: the power of 'no'. Neurosci. Biobehav. Rev. 36, 1107–1118 (2012).

    Article  PubMed  Google Scholar 

  166. Brainin, M., Seiser, A. & Matz, K. The mirror world of motor inhibition: the alien hand syndrome in chronic stroke. J. Neurol. Neurosurg. Psychiatry 79, 246–252 (2008).

    Article  CAS  PubMed  Google Scholar 

  167. Mischel, W., Ebbesen, E. B. & Raskoff Zeiss, A. Cognitive and attentional mechanisms in delay of gratification. J. Pers. Soc. Psychol. 21, 204–218 (1972).

    Article  CAS  PubMed  Google Scholar 

  168. Freud, S. Das Ich und das Es. Gesammelte Werke: XIII [German] (Internationaler Psychoanalytischer Verlag, 1923).

    Google Scholar 

Download references

Acknowledgements

The authors thank J. Poulet, M. Vestergaard, A. Clemens, R. Rao and A. Neukirchner for valuable discussions and comments on the manuscript. This work was funded by the Humboldt Universität zu Berlin within the Excellence Initiative of the states and the federal government, BCCN Berlin (German Federal Ministry of Education and Research BMBF, Förderkennzeichen 01GQ1001A), NeuroCure and the Gottfried Wilhelm Leibniz Prize of the DFG.

Author information

Authors and Affiliations

Authors

Contributions

The authors both researched data for the article, provided substantial contributions to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Michael Brecht.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebbesen, C., Brecht, M. Motor cortex — to act or not to act?. Nat Rev Neurosci 18, 694–705 (2017). https://doi.org/10.1038/nrn.2017.119

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2017.119

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing