Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dendritic mRNA: transport, translation and function

Key Points

  • Dendritic protein synthesis involves the coordination of mRNA transport, localization and translation. These steps are modulated by synaptic activity and by neurotransmitters such as glutamate, brain-derived neurotrophic factor, dopamine and others.

  • Dendritic mRNA translation provides a mechanism for local-protein-synthesis-dependent modification of neuronal structure and function. Stable forms of long-term potentiation (LTP) and long-term depression (LTD) require dendritic protein synthesis.

  • RNAs are sorted into large ribonucleoprotein particles and transported to dendrites along microtubules. Stored RNAs are kept translationally dormant by sequence-specific RNA-binding proteins and microRNAs.

  • Synaptic activity and neurotransmitter signalling regulate global and mRNA-specific translation in dendrites. Phosphorylation of eukaryotic translation initiation factor 4E (eIF4E) and eukaryotic translation elongation factor F2 (eEF2) regulates global enhancement of translation initiation and arrest of peptide chain elongation, respectively.

  • RNA-binding proteins and microRNAs have emerged as the principle regulators of mRNA-specific translation; neurotransmitters can stimulate local protein synthesis by inhibiting these inhibitors and, thus, de-repressing translation.

  • Dendritic transport and local synthesis of the immediate early gene product Arc (also known as Arg3.1) is necessary for the local expansion of the actin cytoskeleton that underlies LTP consolidation in the dentate gyrus. Cytoplasmic-polyadenylation-element-binding protein 1 (CPEB1)-mediated translation in Purkinje neurons of the cerebellum is necessary for LTD, motor learning and dendritic synthesis of insulin receptor substrate p53 (IRSp53), an important regulator of actin dynamics.

  • Dendritically synthesized proteins are implicated in various functions, including the regulation of actin dynamics, glutamate receptor trafficking and modulation of the extracellular matrix.

Abstract

Many cellular functions require the synthesis of a specific protein or functional cohort of proteins at a specific time and place in the cell. Local protein synthesis in neuronal dendrites is essential for understanding how neural activity patterns are transduced into persistent changes in synaptic connectivity during cortical development, memory storage and other long-term adaptive brain responses. Regional and temporal changes in protein levels are commonly coordinated by an asymmetric distribution of mRNAs. This Review attempts to integrate current knowledge of dendritic mRNA transport, storage and translation, placing particular emphasis on the coordination of regulation and function during activity-dependent synaptic plasticity in the adult mammalian brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed model for mRNA translation in neuronal dendrites.
Figure 2: Translation control in dendrites.
Figure 3: A model of Arc-dependent LTP consolidation in the dentate gyrus.
Figure 4: A proposed model for the role of CPEB1-mediated protein synthesis in cerebellar LTD.
Figure 5: Predicted functional synergy of dendritically synthesized proteins.

Similar content being viewed by others

References

  1. Steward, O. & Levy, W. B. Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. J. Neurosci. 2, 284–291 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sutton, M. A. & Schuman, E. M. Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127, 49–58 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Anderson, P. & Kedersha, N. RNA granules. J. Cell Biol. 172, 803–808 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kiebler, M. A. & Bassell, G. J. Neuronal RNA granules: movers and makers. Neuron 51, 685–690 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Moore, M. J. From birth to death: the complex lives of eukaryotic mRNAs. Science 309, 1514–1518 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Giorgi, C. et al. The EJC factor eIF4AIII modulates synaptic strength and neuronal protein expression. Cell 130, 179–191 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Darzacq, X., Powrie, E., Gu, W., Singer, R. H. & Zenklusen, D. RNA asymmetric distribution and daughter/mother differentiation in yeast. Curr. Opin. Microbiol. 6, 614–620 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, H. L. et al. Neurotrophin-induced transport of a β-actin mRNP complex increases β-actin levels and stimulates growth cone motility. Neuron 31, 261–275 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Oleynikov, Y. & Singer, R. H. Real-time visualization of ZBP1 association with β-actin mRNA during transcription and localization. Curr. Biol. 13, 199–207 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huttelmaier, S. et al. Spatial regulation of β-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438, 512–515 (2005). This study provides the first link between mRNA translational repression and transport in neurons.

    Article  CAS  PubMed  Google Scholar 

  11. Tiruchinapalli, D. M. et al. Activity-dependent trafficking and dynamic localization of zipcode binding protein 1 and β-actin mRNA in dendrites and spines of hippocampal neurons. J. Neurosci. 23, 3251–3261 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eom, T., Antar, L. N., Singer, R. H. & Bassell, G. J. Localization of a β-actin messenger ribonucleoprotein complex with zipcode-binding protein modulates the density of dendritic filopodia and filopodial synapses. J. Neurosci. 23, 10433–10444 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vessey, J. P. et al. Dendritic localization of the translational repressor Pumilio 2 and its contribution to dendritic stress granules. J. Neurosci. 26, 6496–6508 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Elvira, G. et al. Characterization of an RNA granule from developing brain. Mol. Cell Proteomics 5, 635–651 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Kanai, Y., Dohmae, N. & Hirokawa, N. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43, 513–525 (2004). This paper identifies proteins and RNAs from a dendritic RNA transport granule.

    Article  CAS  PubMed  Google Scholar 

  16. Ohashi, S. et al. Identification of mRNA/protein (mRNP) complexes containing Purα, mStaufen, fragile X protein, and myosin Va and their association with rough endoplasmic reticulum equipped with a kinesin motor. J. Biol. Chem. 277, 37804–37810 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Klann, E. & Dever, T. E. Biochemical mechanisms for translational regulation in synaptic plasticity. Nature Rev. Neurosci. 5, 931–942 (2004).

    Article  CAS  Google Scholar 

  18. Bannai, H. et al. An RNA-interacting protein, SYNCRIP (heterogeneous nuclear ribonuclear protein Q1/NSAP1) is a component of mRNA granule transported with inositol 1,4,5-trisphosphate receptor type 1 mRNA in neuronal dendrites. J. Biol. Chem. 279, 53427–53434 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Fujii, R. & Takumi, T. TLS facilitates transport of mRNA encoding an actin-stabilizing protein to dendritic spines. J. Cell Sci. 118, 5755–5765 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Bagni, C. & Greenough, W. T. From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nature Rev. Neurosci. 6, 376–387 (2005).

    Article  CAS  Google Scholar 

  21. Wu, L. et al. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of α-CaMKII mRNA at synapses. Neuron 21, 1129–1139 (1998). This paper demonstrates a molecular mechanism for experience-driven mRNA translation in neurons.

    Article  CAS  PubMed  Google Scholar 

  22. Huang, Y. S., Carson, J. H., Barbarese, E. & Richter, J. D. Facilitation of dendritic mRNA transport by CPEB. Genes Dev. 17, 638–653 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Knowles, R. B. et al. Translocation of RNA granules in living neurons. J. Neurosci. 16, 7812–7820 (1996). This study was the first to demonstrate the existence of transport RNPs in neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dynes, J. L. & Steward, O. Dynamics of bidirectional transport of Arc mRNA in neuronal dendrites. J. Comp. Neurol. 500, 433–447 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Kohrmann, M. et al. Microtubule-dependent recruitment of Staufen–green fluorescent protein into large RNA-containing granules and subsequent dendritic transport in living hippocampal neurons. Mol. Biol. Cell 10, 2945–2953 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rook, M. S., Lu, M. & Kosik, K. S. CaMKIIα 3′ untranslated region-directed mRNA translocation in living neurons: visualization by GFP linkage. J. Neurosci. 20, 6385–6393 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tang, S. J., Meulemans, D., Vazquez, L., Colaco, N. & Schuman, E. A role for a rat homolog of staufen in the transport of RNA to neuronal dendrites. Neuron 32, 463–475 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Steward, O. & Worley, P. F. Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation. Neuron 30, 227–240 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Steward, O., Wallace, C. S., Lyford, G. L. & Worley, P. F. Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21, 741–751 (1998). This in vivo study demonstrates activity-dependent localization of Arc mRNA to synapses.

    Article  CAS  PubMed  Google Scholar 

  30. Grooms, S. Y. et al. Activity bidirectionally regulates AMPA receptor mRNA abundance in dendrites of hippocampal neurons. J. Neurosci. 26, 8339–8351 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ostroff, L. E., Fiala, J. C., Allwardt, B. & Harris, K. M. Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron 35, 535–545 (2002). This study used three-dimensional reconstruction from serial electron micrographs to demonstrate polyribosome transport into spines during LTP.

    Article  CAS  PubMed  Google Scholar 

  32. Havik, B., Rokke, H., Bardsen, K., Davanger, S. & Bramham, C. R. Bursts of high-frequency stimulation trigger rapid delivery of pre-existing α-CaMKII mRNA to synapses: a mechanism in dendritic protein synthesis during long-term potentiation in adult awake rats. Eur. J. Neurosci. 17, 2679–2689 (2003).

    Article  PubMed  Google Scholar 

  33. Yoshimura, A. et al. Myosin-Va facilitates the accumulation of mRNA/protein complex in dendritic spines. Curr. Biol. 16, 2345–2351 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Richter, J. D. & Sonenberg, N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433, 477–480 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Aakalu, G., Smith, W. B., Nguyen, N., Jiang, C. & Schuman, E. M. Dynamic visualization of local protein synthesis in hippocampal neurons. Neuron 30, 489–502 (2001). This paper uses optical techniques to directly demonstrate that protein synthesis occurs in dendrites in response to BDNF.

    Article  CAS  PubMed  Google Scholar 

  36. Tsokas, P., Ma, T., Iyengar, R., Landau, E. M. & Blitzer, R. D. Mitogen-activated protein kinase upregulates the dendritic translation machinery in long-term potentiation by controlling the mammalian target of rapamycin pathway. J. Neurosci. 27, 5885–5894 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tang, S. J. et al. A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc. Natl Acad. Sci. USA 99, 467–472 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Pfeiffer, B. E. & Huber, K. M. Current advances in local protein synthesis and synaptic plasticity. J. Neurosci. 26, 7147–7150 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kang, H. & Schuman, E. M. A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science 273, 1402–1406 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Messaoudi, E. et al. Sustained Arc synthesis controls LTP consolidation through regulation of local actin polymerization in the dentate gyrus in vivo. J. Neurosci. [in the press] (2007). This paper couples dendritic Arc synthesis to local stabilization of F-actin and LTP consolidation.

  41. Kelleher, R. J. III,, Govindarajan, A., Jung, H. Y., Kang, H. & Tonegawa, S. Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116, 467–479 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Schratt, G. M., Nigh, E. A., Chen, W. G., Hu, L. & Greenberg, M. E. BDNF regulates the translation of a select group of mRNAs by a mammalian target of rapamycin–phosphatidylinositol 3-kinase-dependent pathway during neuronal development. J. Neurosci. 24, 7366–7377 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takei, N. et al. Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent local activation of translation machinery and protein synthesis in neuronal dendrites. J. Neurosci. 24, 9760–9769 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cammalleri, M. et al. Time-restricted role for dendritic activation of the mTOR–p70S6K pathway in the induction of late-phase long-term potentiation in the CA1. Proc. Natl Acad. Sci. USA 100, 14368–14373 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kanhema, T. et al. Dual regulation of translation initiation and peptide chain elongation during BDNF-induced LTP in vivo: evidence for compartment-specific translation control. J. Neurochem. 19, 1328–1337 (2006).

    Article  CAS  Google Scholar 

  46. Banko, J. L., Hou, L., Poulin, F., Sonenberg, N. & Klann, E. Regulation of eukaryotic initiation factor 4E by converging signaling pathways during metabotropic glutamate receptor-dependent long-term depression. J. Neurosci. 26, 2167–2173 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Holcik, M. & Sonenberg, N. Translational control in stress and apoptosis. Nature Rev. Mol. Cell Biol. 6, 318–327 (2005).

    Article  CAS  Google Scholar 

  48. Dyer, J. R. et al. An activity-dependent switch to cap-independent translation triggered by eIF4E dephosphorylation. Nature Neurosci. 6, 219–220 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Pinkstaff, J. K., Chappell, S. A., Mauro, V. P., Edelman, G. M. & Krushel, L. A. Internal initiation of translation of five dendritically localized neuronal mRNAs. Proc. Natl Acad. Sci. USA 98, 2770–2775 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Browne, G. J. & Proud, C. G. Regulation of peptide-chain elongation in mammalian cells. Eur. J. Biochem. 269, 5360–5368 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Scheetz, A. J., Nairn, A. C. & Constantine-Paton, M. NMDA receptor-mediated control of protein synthesis at developing synapses. Nature Neurosci. 3, 211–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Chotiner, J. K., Khorasani, H., Nairn, A. C., O'Dell, T. J. & Watson, J. B. Adenylyl cyclase-dependent form of chemical long-term potentiation triggers translational regulation at the elongation step. Neuroscience. 116, 743–752 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Yin, Y., Edelman, G. M. & Vanderklish, P. W. The brain-derived neurotrophic factor enhances synthesis of Arc in synaptoneurosomes. Proc. Natl Acad. Sci. USA 99, 2368–2373 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sutton, M. A., Wall, N. R., Aakalu, G. N. & Schuman, E. M. Regulation of dendritic protein synthesis by miniature synaptic events. Science 304, 1979–1983 (2004). This study demonstrates tonic inhibition of dendritic protein synthesis in response to spontaneous glutamate release.

    Article  CAS  PubMed  Google Scholar 

  55. Sutton, M. A. et al. Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell 125, 785–799 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Sutton, M. A., Taylor, A. M., Ito, H. T., Pham, A. & Schuman, E. M. Postsynaptic decoding of neural activity: eEF2 as a biochemical sensor coupling miniature synaptic transmission to local protein synthesis. Neuron 55, 648–661 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Raab-Graham, K. F., Haddick, P. C., Jan, Y. N. & Jan, L. Y. Activity- and mTOR-dependent suppression of Kv1.1 channel mRNA translation in dendrites. Science 314, 144–148 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Tsokas, P. et al. Local protein synthesis mediates a rapid increase in dendritic elongation factor 1A after induction of late long-term potentiation. J. Neurosci. 25, 5833–5843 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang, F., Chotiner, J. K. & Steward, O. The mRNA for elongation factor 1α is localized in dendrites and translated in response to treatments that induce long-term depression. J. Neurosci. 25, 7199–7209 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liao, L. et al. BDNF induces widespread changes in synaptic protein content and up-regulates components of the translation machinery: an analysis using high-throughput proteomics. J. Proteome. Res. 6, 1059–1071 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Wells, D. G. RNA-binding proteins: a lesson in repression. J. Neurosci. 26, 7135–7138 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hake, L. E. & Richter, J. D. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell 79, 617–627 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Theis, M., Si, K. & Kandel, E. R. Two previously undescribed members of the mouse CPEB family of genes and their inducible expression in the principal cell layers of the hippocampus. Proc. Natl Acad. Sci. USA 100, 9602–9607 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang, Y. S., Kan, M. C., Lin, C. L. & Richter, J. D. CPEB3 and CPEB4 in neurons: analysis of RNA-binding specificity and translational control of AMPA receptor GluR2 mRNA. EMBO J. 25, 4865–4876 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Stebbins-Boaz, B., Cao, Q., de Moor, C. H., Mendez, R. & Richter, J. D. Maskin is a CPEB-associated factor that transiently interacts with elF-4E. Mol. Cell 4, 1017–1027 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Barnard, D. C., Ryan, K., Manley, J. L. & Richter, J. D. Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell 119, 641–651 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Kim, J. H. & Richter, J. D. Opposing polymerase–deadenylase activities regulate cytoplasmic polyadenylation. Mol. Cell 24, 173–183 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Cao, Q. & Richter, J. D. Dissolution of the maskin–eIF4E complex by cytoplasmic polyadenylation and poly(A)-binding protein controls cyclin B1 mRNA translation and oocyte maturation. EMBO J. 21, 3852–3862 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mendez, R. & Richter, J. D. Translational control by CPEB: a means to the end. Nature Rev. Mol. Cell Biol. 2, 521–529 (2001).

    Article  CAS  Google Scholar 

  70. Huang, Y.-S., Jung, M.-Y., Sarkissian, M. & Richter, J. D. N-methyl-D-aspartate receptor signaling results in Aurora kinase-catalyzed CPEB phosphorylation and αCaMKII mRNA polyadenylation at synapses. EMBO J. 21, 2139–2148 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Atkins, C. M., Nozaki, N., Shigeri, Y. & Soderling, T. R. Cytoplasmic polyadenylation element binding protein-dependent protein synthesis is regulated by calcium/calmodulin-dependent protein kinase II. J. Neurosci. 24, 5193–5201 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. McEvoy, M. et al. Cytoplasmic polyadenylation element binding protein 1-mediated mRNA translation in Purkinje neurons is required for cerebellar long-term depression and motor coordination. J. Neurosci. 27, 6400–6411 (2007). This paper demonstrates a role for CPEB1 in synapse morphology, activity-driven synthesis of IRSp53 and motor learning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wells, D. G. et al. A role for the cytoplasmic polyadenylation element in NMDA receptor-regulated mRNA translation in neurons. J. Neurosci. 21, 9541–9548 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shin, C. Y., Kundel, M. & Wells, D. G. Rapid, activity-induced increase in tissue plasminogen activator is mediated by metabotropic glutamate receptor-dependent mRNA translation. J. Neurosci. 24, 9425–9433 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Alarcon, J. M. et al. Selective modulation of some forms of Schaffer collateral–CA1 synaptic plasticity in mice with a disruption of the CPEB-1 gene. Learn. Mem. 11, 318–327 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zalfa, F. et al. The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses. Cell 112, 317–327 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Costa, A. et al. The Drosophila fragile X protein functions as a negative regulator in the orb autoregulatory pathway. Dev. Cell 8, 331–342 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Berger-Sweeney, J., Zearfoss, N. R. & Richter, J. D. Reduced extinction of hippocampal-dependent memories in CPEB knockout mice. Learn. Mem. 13, 4–7 (2006).

    Article  PubMed  Google Scholar 

  79. Garber, K., Smith, K. T., Reines, D. & Warren, S. T. Transcription, translation and fragile X syndrome. Curr. Opin. Genet. Dev. 16, 270–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Weiler, I. J. et al. Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc. Natl Acad. Sci. USA 94, 5395–5400 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Feng, Y. et al. Fragile X mental retardation protein: nucleocytoplasmic shuttling and association with somatodendritic ribosomes. J. Neurosci. 17, 1539–1547 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hou, L. et al. Dynamic translational and proteasomal regulation of fragile X mental retardation protein controls mGluR-dependent long-term depression. Neuron 51, 441–454 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Laggerbauer, B., Ostareck, D., Keidel, E. M., Ostareck-Lederer, A. & Fischer, U. Evidence that fragile X mental retardation protein is a negative regulator of translation. Hum. Mol. Genet. 10, 329–338 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Li, Z. et al. The fragile X mental retardation protein inhibits translation via interacting with mRNA. Nucleic Acids Res. 29, 2276–2283 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Miyashiro, K. Y. et al. RNA cargoes associating with FMRP reveal deficits in cellular functioning in Fmr1 null mice. Neuron 37, 417–431 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Brown, V. et al. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107, 477–487 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Khandjian, E. W. et al. Biochemical evidence for the association of fragile X mental retardation protein with brain polyribosomal ribonucleoparticles. Proc. Natl Acad. Sci. USA 101, 13357–13362 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stefani, G., Fraser, C. E., Darnell, J. C. & Darnell, R. B. Fragile X mental retardation protein is associated with translating polyribosomes in neuronal cells. J. Neurosci. 24, 7272–7276 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Siomi, M. C., Zhang, Y., Siomi, H. & Dreyfuss, G. Specific sequences in the fragile X syndrome protein FMR1 and the FXR proteins mediate their binding to 60S ribosomal subunits and the interactions among them. Mol. Cell Biol. 16, 3825–3832 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Antar, L. N., Afroz, R., Dictenberg, J. B., Carroll, R. C. & Bassell, G. J. Metabotropic glutamate receptor activation regulates fragile x mental retardation protein and Fmr1 mRNA localization differentially in dendrites and at synapses. J. Neurosci. 24, 2648–2655 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Greenough, W. T. et al. Synaptic regulation of protein synthesis and the fragile X protein. Proc. Natl Acad. Sci. USA 98, 7101–7106 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bear, M. F., Huber, K. M. & Warren, S. T. The mGluR theory of fragile X mental retardation. Trends Neurosci. 27, 370–377 (2004).

    CAS  PubMed  Google Scholar 

  93. Huber, K. M., Gallagher, S. M., Warren, S. T. & Bear, M. F. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc. Natl Acad. Sci. USA 99, 7746–7750 (2002). This study shows that there is an increase in the amplitude of LTD in mice that lack FMRP protein. It was the basis for the mGluR theory of fragile-X syndrome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Koekkoek, S. K. et al. Deletion of FMR1 in Purkinje cells enhances parallel fiber LTD, enlarges spines, and attenuates cerebellar eyelid conditioning in Fragile X syndrome. Neuron 47, 339–352 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Kosik, K. S. The neuronal microRNA system. Nature Rev. Neurosci. 7, 911–920 (2006).

    Article  CAS  Google Scholar 

  96. Schratt, G. M. et al. A brain-specific microRNA regulates dendritic spine development. Nature 439, 283–289 (2006). This paper demonstrated a role for miRNA-regulated mRNA translation in control of spine size.

    Article  CAS  PubMed  Google Scholar 

  97. Ashraf, S. I., McLoon, A. L., Sclarsic, S. M. & Kunes, S. Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 124, 191–205 (2006). This study provides evidence that degradative control of RISC complex proteins regulates the synaptic protein synthesis that underlies stable memory.

    Article  CAS  PubMed  Google Scholar 

  98. Vo, N. et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc. Natl Acad. Sci. USA 102, 16426–16431 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wibrand, K., Tiron, A., Skaftnesmo, K. O. & Bramham, C. R. Identification of microRNAs associated with long-term potentiation in adult rat dentate gyrus. Abstr. Soc. Neurosci. 537.2 (2006).

  100. Bradshaw, K. D., Emptage, N. J. & Bliss, T. V. A role for dendritic protein synthesis in hippocampal late LTP. Eur. J. Neurosci. 18, 3150–3152 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Miller, S. et al. Disruption of dendritic translation of CaMKIIα impairs stabilization of synaptic plasticity and memory consolidation. Neuron 36, 507–519 (2002). This study used knock-in technology to produce a mouse in which the mRNA encoding αCaMKII did not localize to dendrites. The mouse showed alterations in synaptic plasticity and memory.

    Article  CAS  PubMed  Google Scholar 

  102. Huber, K. M., Kayser, M. S. & Bear, M. F. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 288, 1254–1257 (2000). This paper provides the best evidence to date that dendritic protein synthesis is crucial for some forms of synaptic plasticity.

    Article  CAS  PubMed  Google Scholar 

  103. Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fukazawa, Y. et al. Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38, 447–460 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Harris, K. M., Fiala, J. C. & Ostroff, L. Structural changes at dendritic spine synapses during long-term potentiation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 745–748 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Halpain, S. Actin and the agile spine: how and why do dendritic spines dance? Trends Neurosci. 23, 141–146 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Carlisle, H. J. & Kennedy, M. B. Spine architecture and synaptic plasticity. Trends Neurosci. 28, 182–187 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Chen, L. Y., Rex, C. S., Casale, M. S., Gall, C. M. & Lynch, G. Changes in synaptic morphology accompany actin signaling during LTP. J. Neurosci. 27, 5363–5372 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rex, C. S. et al. Brain-derived neurotrophic factor promotes long-term potentiation-related cytoskeletal changes in adult hippocampus. J. Neurosci. 27, 3017–3029 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pastalkova, E. et al. Storage of spatial information by the maintenance mechanism of LTP. Science 313, 1141–1144 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Ling, D. S., Benardo, L. S. & Sacktor, T. C. Protein kinase Mζ enhances excitatory synaptic transmission by increasing the number of active postsynaptic AMPA receptors. Hippocampus 16, 443–452 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Plath, N. et al. Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52, 437–444 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Huang, Y. Y. et al. Mice lacking the gene encoding tissue-type plasminogen activator show a selective interference with late-phase long-term potentiation in both Schaffer collateral and mossy fiber pathways. Proc. Natl Acad. Sci. USA 93, 8699–8704 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jones, M. W. et al. A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nature Neurosci. 4, 289–296 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Lyford, G. L. et al. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14, 433–445 (1995).

    Article  CAS  PubMed  Google Scholar 

  116. Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P. & Grant, S. G. Proteomic analysis of NMDA receptor–adhesion protein signaling complexes. Nature Neurosci. 3, 661–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Donai, H. et al. Interaction of Arc with CaM kinase II and stimulation of neurite extension by Arc in neuroblastoma cells expressing CaM kinase II. Neurosci. Res. 47, 399–408 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Guzowski, J. F. et al. Inhibition of activity-dependent Arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J. Neurosci. 20, 3993–4001 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bramham, C. R. & Messaoudi, E. BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog. Neurobiol. 76, 99–125 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Messaoudi, E., Ying, S. W., Kanhema, T., Croll, S. D. & Bramham, C. R. Brain-derived neurotrophic factor triggers transcription-dependent, late phase long-term potentiation in vivo. J. Neurosci. 22, 7453–7461 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ying, S. W. et al. Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J. Neurosci. 22, 1532–1540 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Moga, D. E. et al. Activity-regulated cytoskeletal-associated protein is localized to recently activated excitatory synapses. Neuroscience 125, 7–11 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Rodriguez, J. J. et al. Long-term potentiation in the rat dentate gyrus is associated with enhanced Arc/Arg3.1 protein expression in spines, dendrites and glia. Eur. J. Neurosci. 21, 2384–2396 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Chowdhury, S. et al. Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 52, 445–459 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rial Verde, E. M., Lee-Osbourne, J., Worley, P. F., Malinow, R. & Cline, H. T. Increased expression of the immediate-early gene Arc/Arg3.1 reduces AMPA receptor-mediated synaptic transmission. Neuron 52, 461–474 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Shepherd, J. D. et al. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52, 475–484 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hansel, C., Linden, D. J. & D'Angelo, E. Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nature Neurosci. 4, 467–475 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Karachot, L., Shirai, Y., Vigot, R., Yamamori, T. & Ito, M. Induction of long-term depression in cerebellar Purkinje cells requires a rapidly turned over protein. J. Neurophysiol. 86, 280–289 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Mendez, R., Murthy, K. G., Ryan, K., Manley, J. L. & Richter, J. D. Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol. Cell 6, 1253–1259 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Mendez, R. et al. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature 404, 302–307 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Grossman, A. W., Elisseou, N. M., McKinney, B. C. & Greenough, W. T. Hippocampal pyramidal cells in adult Fmr1 knockout mice exhibit an immature-appearing profile of dendritic spines. Brain Res. 1084, 158–164 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Yeh, T. C., Ogawa, W., Danielsen, A. G. & Roth, R. A. Characterization and cloning of a 58/53-kDa substrate of the insulin receptor tyrosine kinase. J. Biol. Chem. 271, 2921–2928 (1996).

    Article  CAS  PubMed  Google Scholar 

  133. Takenawa, T. & Miki, H. WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J. Cell Sci. 114, 1801–1809 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Derkach, V. A., Oh, M. C., Guire, E. S. & Soderling, T. R. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nature Rev. Neurosci. 8, 101–113 (2007).

    Article  CAS  Google Scholar 

  135. Nagy, V. et al. Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. J. Neurosci. 26, 1923–1934 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kramar, E. A., Lin, B., Rex, C. S., Gall, C. M. & Lynch, G. Integrin-driven actin polymerization consolidates long-term potentiation. Proc. Natl Acad. Sci. USA 103, 5579–5584 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pang, P. T. et al. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306, 487–491 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Gooney, M., Messaoudi, E., Maher, F. O., Bramham, C. R. & Lynch, M. A. BDNF-induced LTP in dentate gyrus is impaired with age: analysis of changes in cell signaling events. Neurobiol. Aging 25, 1323–1331 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Smart, F. M., Edelman, G. M. & Vanderklish, P. W. BDNF induces translocation of initiation factor 4E to mRNA granules: evidence for a role of synaptic microfilaments and integrins. Proc. Natl Acad. Sci. USA 100, 14403–14408 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gross, S. R. & Kinzy, T. G. Translation elongation factor 1A is essential for regulation of the actin cytoskeleton and cell morphology. Nature Struct. Mol. Biol. 12, 772–778 (2005).

    Article  CAS  Google Scholar 

  141. Gross, S. R. & Kinzy, T. G. Improper organization of the actin cytoskeleton affects protein synthesis at initiation. Mol. Cell Biol. 27, 1974–1989 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Wu, K. Y. et al. Local translation of RhoA regulates growth cone collapse. Nature 436, 1020–1024 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Goetze, B. et al. The brain-specific double-stranded RNA-binding protein Staufen2 is required for dendritic spine morphogenesis. J. Cell Biol. 172, 221–231 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kelly, M. T., Yao, Y., Sondhi, R. & Sacktor, T. C. Actin polymerization regulates the synthesis of PKMζ in LTP. Neuropharmacology 52, 41–45 (2006).

    Article  PubMed  CAS  Google Scholar 

  145. Muslimov, I. A. et al. Dendritic transport and localization of protein kinase Mζ mRNA: implications for molecular memory consolidation. J. Biol. Chem. 279, 52613–52622 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Fonseca, R., Nagerl, U. V. & Bonhoeffer, T. Neuronal activity determines the protein synthesis dependence of long-term potentiation. Nature Neurosci. 9, 478–480 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Yi, J. J. & Ehlers, M. D. Ubiquitin and protein turnover in synapse function. Neuron 47, 629–632 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Karpova, A., Mikhaylova, M., Thomas, U., Knopfel, T. & Behnisch, T. Involvement of protein synthesis and degradation in long-term potentiation of Schaffer collateral CA1 synapses. J. Neurosci. 26, 4949–4955 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Fonseca, R., Vabulas, R. M., Hartl, F. U., Bonhoeffer, T. & Nagerl, U. V. A balance of protein synthesis and proteasome-dependent degradation determines the maintenance of LTP. Neuron 52, 239–245 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Kedersha, N. & Anderson, P. Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem. Soc. Trans. 30, 963–969 (2002).

    Article  CAS  PubMed  Google Scholar 

  151. Kimball, S. R., Horetsky, R. L., Ron, D., Jefferson, L. S. & Harding, H. P. Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes. Am. J. Physiol. Cell Physiol. 284, 273–284 (2003).

    Article  Google Scholar 

  152. Wilczynska, A., Aigueperse, C., Kress, M., Dautry, F. & Weil, D. The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules. J. Cell Sci. 118, 981–992 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Thomas, M. G. et al. Staufen recruitment into stress granules does not affect early mRNA transport in oligodendrocytes. Mol. Biol. Cell 16, 405–420 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Tourriere, H. et al. The RasGAP-associated endoribonuclease G3BP assembles stress granules. J. Cell Biol. 160, 823–831 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Mazroui, R. et al. Trapping of messenger RNA by fragile X mental retardation protein into cytoplasmic granules induces translation repression. Hum. Mol. Genet. 11, 3007–3017 (2002).

    Article  CAS  PubMed  Google Scholar 

  156. Barbee, S. A. et al. Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron 52, 997–1009 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wang, H. et al. Dendritic BC1 RNA in translational control mechanisms. J. Cell Biol. 171, 811–821 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Costa-Mattioli, M. et al. Translational control of hippocampal synaptic plasticity and memory by the eIF2α kinase GCN2. Nature 436, 1166–1173 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hartmann, M., Heumann, R. & Lessmann, V. Synaptic secretion of BDNF after high-frequency stimulation of glutamatergic synapses. EMBO J. 20, 5887–5897 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Soule, J., Messaoudi, E. & Bramham, C. R. Brain-derived neurotrophic factor and control of synaptic consolidation in the adult brain. Biochem. Soc. Trans. 34, 600–604 (2006).

    Article  CAS  PubMed  Google Scholar 

  161. Shiina, N., Shinkura, K. & Tokunaga, M. A novel RNA-binding protein in neuronal RNA granules: regulatory machinery for local translation. J. Neurosci. 25, 4420–4434 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ju, W. et al. Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nature Neurosci. 7, 244–253 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Kacharmina, J. E., Job, C., Crino, P. & Eberwine, J. Stimulation of glutamate receptor protein synthesis and membrane insertion within isolated neuronal dendrites. Proc. Natl Acad. Sci. USA 97, 11545–11550 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Iijima, T. et al. Hzf protein regulates dendritic localization and BDNF-induced translation of type 1 inositol 1,4,5-trisphosphate receptor mRNA. Proc. Natl Acad. Sci. USA 102, 17190–17195 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bliss, T., Collingridge, G. & Morris, R. in The Hippocampus Book (eds Andersen, P., Morris, R., Amaral, D., Bliss, T. & O'Keefe, J.) 343–474 (Oxford Univ. Press, 2000).

    Google Scholar 

  166. Fazeli, M. S., Corbet, J., Dunn, M. J., Dolphin, A. C. & Bliss. T. V. Changes in protein synthesis accompanying long-term potentiation in the dentate gyrus in vivo. J. Neurosci. 13, 1346–1353 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Bramham and Wells laboratories for discussions. C.R.B. is supported by the Norwegian Research Council, the EU Biotechnology Program (BIO4-CT98-0333) and the Helse-Bergen Health Organization. D.G.W. is supported by the Ellison Medical Foundation and the National Institute of Mental Health. We apologize for the fact that, owing to space constraints, not all relevant papers could be cited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clive R. Bramham.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Fragile-X Syndrome

FURTHER INFORMATION

Clive R. Bramham's homepage

David G. Wells' homepage

Glossary

Postsynaptic density

(PSD). An electron dense complex that is located at the synaptic membrane of a postsynaptic cell. The PSD contains transmembrane proteins, such as neurotransmitter receptors, as well as intracellular signalling molecules.

Ribonucleoprotein particle

(RNP). A transport granule that contains mRNA, mRNA-binding proteins, motor proteins and small, non-coding RNA (also known as microRNA).

Stress granule

A dense cytosolic protein and RNA aggregation that appears under conditions of cellular stress. The RNA molecules are thought to be stalled translation pre-initiation complexes.

Processing body

A cytoplasmic structure that is thought to be the site of mRNA degradation.

Kinesins

Molecular motor proteins that transport cargoes in one direction along microtubules. For movement in the opposite direction, another motor protein, dynein, is used.

Heterogeneous nuclear ribonucleoproteins

(hnRNPs). A large family of RNA-binding proteins that are involved in RNA regulation and metabolism. Examples of hnRNPs that have been implicated in dendritic mRNA processing include ZBP1, FMRP and hnRNP A2.

Polyribosome

A functional unit of protein synthesis comprised of several ribosomes attached along the length of an mRNA molecule.

Synaptodendrosome

A biochemical fraction that is enriched in pinched-off, resealed axon terminals that are connected to pinched-off, resealed dendritic spines. They are commonly prepared by a two-step ultracentrifugation through a sucrose gradient.

Synaptoneurosome

A biochemical fraction that is qualitatively similar to a synaptodendrosome but which is prepared by low-speed centrifugation and filtration.

RNA interference complex

(RISC). A complex of proteins that is involved in silencing target mRNAs.

Synaptic tagging

A process by which synaptic activity evokes a transient synapse-specific change that allows the synapse to capture proteins or mRNAs that are needed for stable LTP and LTD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bramham, C., Wells, D. Dendritic mRNA: transport, translation and function. Nat Rev Neurosci 8, 776–789 (2007). https://doi.org/10.1038/nrn2150

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2150

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing