Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Short-term plasticity at the calyx of held

Key Points

  • The mechanisms that underlie short-term synaptic plasticity are beginning to be understood. Modifications of the pre- or the postsynaptic elements can account for transient changes in the efficacy of synapses, but presynaptic changes have been particularly difficult to document, owing to the small size of the axon terminal. The calyx of Held — a synapse of the auditory brainstem — has been a good model for the study of presynaptic mechanisms of plasticity, chiefly because of its large size, which makes it accessible to direct experimental manipulations.

  • The calyx of Held undergoes marked morphological and physiological changes during development. They take place both pre- and postsynaptically, and allow this synaptic contact to be extraordinarily fast and reliable. The calyx of Held is involved in sound localization, and its speed is crucial for the accuracy required in performing this function.

  • Although calcium-dependent, short-term facilitation has been observed at the calyx of Held, most experimental attention has centred on the mechanisms of short-term depression. Pre- and postsynaptic mechanisms have been proposed to explain depression; their relative contributions depend on the frequency of stimulation.

  • Possible presynaptic mechanisms of depression at the calyx of Held include changes in action potential waveform, inactivation of calcium currents and vesicle pool depletion. The evidence favours the idea that pool depletion is the most prominent mechanism at this synaptic contact. Glutamate receptor saturation has been proposed, in turn, as a possible postsynaptic mechanism of depression, although the evidence indicates that receptor desensitization has a more significant role.

  • Although short-term plasticity is prominent at the calyx of Held, its relevance to signal processing is unclear. Also, many related questions remain unanswered. How plastic is this synapse in adult animals? How much can the conclusions obtained in the calyx be extrapolated to bouton-type synapses? What mechanisms modulate and control the kinetics of vesicle recycling? The experimental advantages that the calyx of Held offers will be instrumental in solving these riddles.

Abstract

Synapses show widely varying degrees of short-term facilitation and depression. Several mechanisms have been proposed to underlie short-term plasticity, but the contributions of presynaptic mechanisms have been particularly difficult to study because of the small size of synaptic boutons in the mammalian brain. Here we review the functional properties of the calyx of Held, a giant nerve terminal that has shed new light on the general mechanisms that control short-term plasticity. The calyx of Held has also provided fresh insights into the strategies used by synapses to extend their dynamic range of operation and preserve the timing of sensory stimuli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The calyx of Held.
Figure 2: Developmental changes.
Figure 3: Short-term depression and facilitation in the medial nucleus of the trapezoid body.
Figure 4: Mechanisms for short-term synaptic depression and their sites of action.
Figure 5: Effect of a change in AP waveform on presynaptic Ca2+ currents and release.
Figure 6: Lack of contribution of Ca2+ channel inactivation to depression.

Similar content being viewed by others

References

  1. Silver, R. A., Momiyama, A. & Cull-Candy, S. G. Locus of frequency-dependent depression identified with multiple-probability fluctuation analysis at rat climbing fibre–Purkinje cell synapses. J. Physiol. (Lond.) 510, 881–902 (1998).A comprehensive study of presynaptic depression at a giant mammalian synapse that shows severe depression in P12–P14 rats. Release probability was heterogeneous and high at rest, but fell markedly during high-frequency stimulation (10 Hz).

    Article  CAS  Google Scholar 

  2. Thomson, A. M. Molecular frequency filters at central synapses. Prog. Neurobiol. 62, 159–196 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Fortune, E. S. & Rose, G. J. Short-term synaptic plasticity as a temporal filter. Trends Neurosci. 24, 381–385 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Regehr, W. & Stevens, C. F. in Synapses (eds Cowan, M., Südhof, T. & Stevens, C. F.) 135–175 (Johns Hopkins Univ. Press, Baltimore, Maryland, 2000).

    Google Scholar 

  5. Zucker, R. S. Calcium- and activity-dependent synaptic plasticity. Curr. Opin. Neurobiol. 9, 305–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Sätzler, K. et al. 3-D reconstruction and detailed analysis of active zones located at the calyx of Held. Soc. Neurosci. Abstr. 27, 384.15 (2001).

    Google Scholar 

  7. Lenn, N. J. & Reese, T. S. The fine structure of nerve endings in the nucleus of the trapezoid body and the ventral cochlear nucleus. Am. J. Anat. 118, 375–390 (1966).

    Article  CAS  PubMed  Google Scholar 

  8. Smith, P. H., Joris, P. X. & Yin, T. C. Anatomy and physiology of principal cells of the medial nucleus of the trapezoid body (MNTB) of the cat. J. Neurophysiol. 79, 3127–3142 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Forsythe, I. D. Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. J. Physiol. (Lond.) 479, 381–387 (1994).The first patch-clamp recordings from a mammalian nerve terminal. Constant current injection showed that the calyx could fire multiple action potentials. In contrast, the principal (postsynaptic) cell fired only once.

    Article  Google Scholar 

  10. Borst, J. G. G. Helmchen, F. & Sakmann, B. Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J. Physiol. (Lond.) 489, 825–840 (1995).The first paired recordings from the calyx and principal cell of the MNTB. Presynaptic calcium buffering capacity was surprisingly lower than that of hair cells.

    Article  CAS  Google Scholar 

  11. Katz, B. & Miledi, R. The role of calcium in neuromuscular facilitation. J. Physiol. (Lond.) 195, 481–492 (1968).

    Article  CAS  Google Scholar 

  12. Llinás, R. R. The Squid Giant Synapse: a Model for Chemical Transmission (Oxford Univ. Press, New York, 1999).

    Google Scholar 

  13. Harata, N. et al. Limited numbers of recycling vesicles in small CNS nerve terminals: implications for neural signaling and vesicular cycling. Trends Neurosci. 24, 637–643 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Futai, K., Okada, M., Matsuyama, K. & Takahashi, T. High-fidelity transmission acquired via a developmental decrease in NMDA receptor expression at an auditory synapse. J. Neurosci. 21, 3342–3349 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Taschenberger, H. & Von Gersdorff, H. Fine-tuning an auditory synapse for speed and fidelity: developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity. J. Neurosci. 20, 9162–9173 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reyes, A. & Sakmann, B. Developmental switch in the short-term modification of unitary EPSPs evoked in layer 2/3 and layer 5 pyramidal neurons of rat neocortex. J. Neurosci. 19, 3827–3835 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kandler, K. & Friauf, E. Pre- and postnatal development of efferent connections of the cochlear nucleus in the rat. J. Comp. Neurol. 328, 161–184 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Morest, D. K. The growth of synaptic endings in the mammalian brain: a study of the calyces of the trapezoid body. Z. Anat. Entwicklungsgesch. 127, 201–220 (1968).The first systematic study of calyx development, with a review of the early literature.

    Article  CAS  PubMed  Google Scholar 

  19. Rowland, K. C., Irby, N. K. & Spirou, G. A. Specialized synapse-associated structures within the calyx of Held. J. Neurosci. 20, 9135–9144 (2000).Specialized structures associated with mitochondria were found in the calyx of Held of adult cats. Several interesting ideas for their possible function in high-frequency firing are proposed in this paper.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Borst, J. G. G. & Sakmann, B. Effect of changes in action potential shape on calcium currents and transmitter release in a calyx-type synapse of the rat auditory brainstem. Phil. Trans. R. Soc. Lond. B 354, 347–355 (1999).

    Article  CAS  Google Scholar 

  21. Sabatini, B. L. & Regehr, W. G. Timing of synaptic transmission. Annu. Rev. Physiol. 61, 521–542 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Lohmann, C. & Friauf, E. Distribution of the calcium-binding proteins parvalbumin and calretinin in the auditory brainstem of adult and developing rats. J. Comp. Neurol. 367, 90–109 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Elezgarai, I. et al. Developmental expression of the group III metabotropic glutamate receptor mGluR4a in the medial nucleus of the trapezoid body of the rat. J. Comp. Neurol. 411, 431–440 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Chuhma, N. & Ohmori, H. Postnatal development of phase-locked high-fidelity synaptic transmission in the medial nucleus of the trapezoid body of the rat. J. Neurosci. 18, 512–520 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu, L.-G., Westenbroek, R. E., Borst, J. G. G., Catterall, W. E. & Sakmann, B. Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J. Neurosci. 19, 726–736 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Iwasaki, S. & Takahashi, T. Developmental changes in calcium channel types mediating synaptic transmission in rat auditory brainstem. J. Physiol. (Lond.) 509, 419–423 (1998).

    Article  CAS  Google Scholar 

  27. Geiger, J. R. P. et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15, 193–204 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Caicedo, A. & Eybalin, M. Glutamate receptor phenotypes in the auditory brainstem and mid-brain of the developing rat. Eur. J. Neurosci. 11, 51–74 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Lawrence, J. J. & Trussell, L. O. Long-term specification of AMPA receptor properties after synapse formation. J. Neurosci. 20, 4864–4870 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bellingham, M. C., Lim, R. & Walmsley, B. Developmental changes in EPSC quantal size and quantal content at a central glutamatergic synapse in rat. J. Physiol. (Lond.) 511, 861–869 (1998).

    Article  CAS  Google Scholar 

  31. Brenowitz, S. & Trussell, L. O. Maturation of synaptic transmission at end-bulb synapses of the cochlear nucleus. J. Neurosci. 21, 9487–9498 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fisher, S. A., Fischer, T. M. & Carew, T. J. Multiple overlapping processes underlying short-term synaptic enhancement. Trends Neurosci. 20, 170–177 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Chen, C. & Regehr, W. G. Contributions of residual calcium to fast synaptic transmission. J. Neurosci. 19, 6257–6266 (1999).Simultaneous calcium imaging and EPSC recordings from cerebellar synapses reveal the timing of residual calcium and its role in delayed release.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zucker, R. S. Short-term synaptic plasticity. Annu. Rev. Neurosci. 12, 13–31 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Barnes-Davies, M. & Forsythe, I. D. Pre- and postsynaptic glutamate receptors at a giant excitatory synapse in rat auditory brainstem slices. J. Physiol. (Lond.) 488, 387–406 (1995).

    Article  CAS  Google Scholar 

  36. Helmchen, F., Borst, J. G. G. & Sakmann, B. Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. Biophys. J. 72, 1458–1471 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Borst, J. G. G. & Sakmann, B. Calcium influx and transmitter release in a fast CNS synapse. Nature 383, 431–434 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Chuhma, N., Koyano, K. & Ohmori, H. Synchronisation of neurotransmitter release during postnatal development in a calyceal presynaptic terminal of rat. J. Physiol. (Lond.) 530, 93–104 (2001).

    Article  CAS  Google Scholar 

  39. Sakaba, T. & Neher, E. Quantitative relationship between transmitter release and calcium current at the calyx of Held synapse. J. Neurosci. 21, 462–476 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rozov, A., Burnashev, N., Sakmann, B. & Neher, E. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics. J. Physiol. (Lond.) 531, 807–826 (2001).

    Article  CAS  Google Scholar 

  41. Bollmann, J. H., Sakmann, B. & Borst, J. G. G. Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289, 953–957 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Schneggenburger, R. & Neher, E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406, 889–893 (2000).In references 41 and 42 , the high sensitivity of AMPA receptors to released glutamate was used, together with flash-photolysis of caged calcium, to study the calcium dependence of release at the calyx of Held. Low micromolar elevations of internal calcium were sufficient to trigger release.

    Article  CAS  PubMed  Google Scholar 

  43. Turecek, R. & Trussell, L. O. Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse. Nature 411, 587–590 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Rudomin, P. & Schmidt, R. F. Presynaptic inhibition in the vertebrate spinal cord revisited. Exp. Brain Res. 129, 1–37 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Borst, J. G. G. & Sakmann, B. Facilitation of presynaptic calcium currents in the rat brainstem. J. Physiol. (Lond.) 513, 149–155 (1998).

    Article  CAS  Google Scholar 

  46. Cuttle, M. F., Tsujimoto, T., Forsythe, I. D. & Takahashi, T. Facilitation of the presynaptic calcium current at an auditory synapse in rat brainstem. J. Physiol. (Lond.) 512, 723–729 (1998).

    Article  CAS  Google Scholar 

  47. Sakaba, T. & Neher, E. Preferential potentiation of fast-releasing synaptic vesicles by cAMP at the calyx of Held. Proc. Natl Acad. Sci. USA 98, 331–336 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Rozov, A. & Burnashev, N. Polyamine-dependent facilitation of postsynaptic AMPA receptors counteracts paired-pulse depression. Nature 401, 594–598 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. von Gersdorff, H., Schneggenburger, R., Weis, S. & Neher, E. Presynaptic depression at a calyx synapse: the small contribution of metabotropic glutamate receptors. J. Neurosci. 17, 8137–8146 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mosbacher, J. et al. A molecular determinant for submillisecond desensitization in glutamate receptors. Science 266, 1059–1062 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Trussell, L. O. Synaptic mechanisms for coding timing in auditory neurons. Annu. Rev. Physiol. 61, 477–496 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Neher, E. & Sakaba, T. Combining deconvolution and noise analysis for the estimation of transmitter release rates at the calyx of Held. J. Neurosci. 21, 444–461 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun, J. Y. & Wu, L.-G. Fast kinetics of exocytosis revealed by simultaneous measurements of presynaptic capacitance and postsynaptic currents at a central synapse. Neuron 30, 171–182 (2001).Presynaptic capacitance measurements were used to estimate a surprisingly large vesicle pool size in the calyx of Held, and correlated well with EPSC amplitudes when desensitization and saturation of AMPA receptors were blocked.

    Article  CAS  PubMed  Google Scholar 

  54. Wang, L.-Y. & Kaczmarek, L. K. High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Nature 394, 384–388 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Wu, L.-G. & Borst, J. G. G. The reduced release probability of releasable vesicles during recovery from short-term synaptic depression. Neuron 23, 821–832 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Brody, D. L. & Yue, D. T. Release-independent short-term synaptic depression in cultured hippocampal neurons. J. Neurosci. 20, 2480–2494 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Debanne, D., Guerineau, N. C., Gahwiler, B. H. & Thompson, S. M. Action-potential propagation gated by an axonal IA-like K+ conductance in hippocampus. Nature 389, 286–289 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Cox, C. L., Denk, W., Tank, D. W. & Svoboda, K. Action potentials reliably invade axonal arbors of rat neocortical neurons. Proc Natl Acad Sci U S A 97, 9724–9728 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Koester, H. J. & Sakmann, B. Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex. J. Physiol. (Lond.) 529, 625–646 (2000).

    Article  CAS  Google Scholar 

  60. Banks, M. I. & Smith, P. H. Intracellular recordings from neurobiotin-labeled cells in brain slices of the rat medial nucleus of the trapezoid body. J. Neurosci. 12, 2819–2837 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu, S. H. & Kelly, J. B. Response of neurons in the lateral superior olive and medial nucleus of the trapezoid body to repetitive stimulation: intracellular and extracellular recordings from mouse brain slice. Hear. Res. 68, 189–201 (1993).

    Article  CAS  PubMed  Google Scholar 

  62. Geiger, J. R. & Jonas, P. Dynamic control of presynaptic Ca2+ inflow by fast-inactivating K+ channels in hippocampal mossy fiber boutons. Neuron 28, 927–939 (2000).The first patch-clamp recordings from a conventional bouton-type mammalian nerve terminal. AP waveforms changed during high-frequency firing.

    Article  CAS  PubMed  Google Scholar 

  63. Jackson, M. B., Konnerth, A. & Augustine, G. J. Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals. Proc Natl Acad Sci U S A 88, 380–384 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Charlton, M. P., Smith, S. J. & Zucker, R. S. Role of presynaptic calcium ions and channels in synaptic facilitation and depression at the squid giant synapse. J. Physiol. (Lond.) 323, 173–193 (1982).

    Article  CAS  Google Scholar 

  65. von Gersdorff, H. & Matthews, G. Depletion and replenishment of vesicle pools at a ribbon-type synaptic terminal. J. Neurosci. 17, 1919–1927 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Forsythe, I. D., Tsujimoto, T., Barnes-Davies, M., Cuttle, M. F. & Takahashi, T. Inactivation of presynaptic calcium current contributes to synaptic depression at a fast central synapse. Neuron 20, 797–807 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Isaacson, J. S. GABAB receptor-mediated modulation of presynaptic currents and excitatory transmission at a fast central synapse. J. Neurophysiol. 80, 1571–1576 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Kajikawa, Y., Saitoh, N. & Takahashi, T. GTP-binding protein βγ subunits mediate presynaptic calcium current inhibition by GABAB receptor. Proc Natl Acad Sci U S A 98, 8054–8058 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Takahashi, T., Forsythe, I. D., Tsujimoto, T., Barnes-Davies, M. & Onodera, K. Presynaptic calcium current modulation by a metabotropic glutamate receptor. Science 274, 594–597 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Wu, L.-G., Borst, J. G. G. & Sakmann, B. R-type Ca2+ currents evoke transmitter release at a rat central synapse. Proc. Natl Acad. Sci. USA 95, 4720–4725 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Leão, R. & Von Gersdorff, H. Noradrenaline increases the high-frequency firing of the calyx of Held synapse during early development by inhibiting glutamate release. J. Neurophysiol. (in the press).

  72. Iwasaki, S. & Takahashi, T. Developmental regulation of transmitter release at the calyx of Held in rat auditory brainstem. J. Physiol. (Lond.) 534, 861–871 (2001).The rate of recovery from depression elicited by 10-Hz stimulation did not change during development, indicating that some synaptic parameters are not so sensitive to age.

    Article  CAS  Google Scholar 

  73. Wilson, R. I. & Nicoll, R. A. Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410, 588–592 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Borst, J. G. G. & Sakmann, B. Depletion of calcium in the synaptic cleft of a calyx-type synapse in the rat brainstem. J. Physiol. (Lond.) 521, 123–133 (1999).

    Article  CAS  Google Scholar 

  75. Weis, S., Schneggenburger, R. & Neher, E. Properties of a model of Ca++-dependent vesicle pool dynamics and short term synaptic depression. Biophys. J. 77, 2418–2429 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liley, A. W. & North, K. A. K. An electrical investigation of effects of repetitive stimulation on mammalian neuromuscular junction. J. Neurophysiol. 16, 509–527 (1953).

    Article  CAS  PubMed  Google Scholar 

  77. Rosenmund, C. & Stevens, C. F. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16, 1197–1207 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Schneggenburger, R., Meyer, A. C. & Neher, E. Released fraction and total size of a pool of immediately available transmitter quanta at a calyx synapse. Neuron 23, 399–409 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Wu, X. S. & Wu, L. G. Protein kinase C increases the apparent affinity of the release machinery to Ca2+ by enhancing the release machinery downstream of the Ca2+ sensor. J. Neurosci. 21, 7928–7936 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dittman, J. S. & Regehr, W. G. Calcium dependence and recovery kinetics of presynaptic depression at the climbing fiber to Purkinje cell synapse. J. Neurosci. 18, 6147–6162 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Stevens, C. F. & Wesseling, J. F. Activity-dependent modulation of the rate at which synaptic vesicles become available to undergo exocytosis. Neuron 21, 415–424 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Sakaba, T. & Neher, E. Calmodulin mediates rapid recruitment of fast-releasing synaptic vesicles at a calyx-type synapse. Neuron (in the press).

  83. Hsu, S.-F., Augustine, G. J. & Jackson, M. B. Adaptation of Ca2+-triggered exocytosis in presynaptic terminals. Neuron 17, 501–512 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Schikorski, T. & Stevens, C. F. Morphological correlates of functionally defined synaptic vesicle populations. Nature Neurosci. 4, 391–395 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Meyer, A. C., Neher, E. & Schneggenburger, R. Estimation of quantal size and number of functional active zones at the calyx of Held synapse by nonstationary EPSC variance analysis. J. Neurosci. 21, 7889–7900 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Van der Kloot, W. & Molgó, J. Quantal acetylcholine release at the vertebrate neuromuscular junction. Physiol. Rev. 74, 899–991 (1994).A massive undertaking that reviews the synaptic physiology of the neuromuscular junction. A valuable source of references on short-term plasticity.

    Article  CAS  PubMed  Google Scholar 

  87. Leenders, A. G., Scholten, G., Wiegant, V. M., da Silva, F. H. & Ghijsen, W. E. Activity-dependent neurotransmitter release kinetics: correlation with changes in morphological distributions of small and large vesicles in central nerve terminals. Eur. J. Neurosci. 11, 4269–4277 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Waldeck, R. F., Pereda, A. & Faber, D. S. Properties and plasticity of paired-pulse depression at a central synapse. J. Neurosci. 20, 5312–5320 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Korn, H., Sur, C., Charpier, S., Legendre, P. & Faber, D. S. in Molecular and Cellular Mechanisms of Neurotransmitter Release (eds Stjärne, L., Greengard, P., Grillner, S., Hökfelt, T. & Ottoson, D.) 301–322 (Raven, New York, 1994).

    Book  Google Scholar 

  90. Stevens, C. F. & Wang, Y. Facilitation and depression at single central synapses. Neuron 14, 795–802 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Walmsley, B., Alvarez, F. J. & Fyffe, R. E. W. Diversity of structure and function at mammalian central synapses. Trends Neurosci. 21, 81–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Auger, C. & Marty, A. Quantal currents at single-site central synapses. J. Physiol. (Lond.) 526, 3–11 (2000).

    Article  CAS  Google Scholar 

  93. von Gersdorff, H., Vardi, E., Matthews, G. & Sterling, P. Evidence that vesicles on the synaptic ribbon of retinal bipolar neurons can be rapidly released. Neuron 16, 1221–1227 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Ishikawa, T., Sahara, Y. & Takahashi, T. A single packet of glutamate does not saturate postsynaptic AMPA receptors at the calyx of Held synapse. Soc. Neurosci. Abstr. 26, 422.1 (2000).

  95. Bollmann, J. H., Helmchen, F., Borst, J. G. G. & Sakmann, B. Postsynaptic Ca2+ influx mediated by three different pathways during synaptic transmission at a calyx-type synapse. J. Neurosci. 18, 10409–10419 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Delgado, R., Maureira, C., Oliva, C., Kidokoro, Y. & Labarca, P. Size of vesicle pools, rates of mobilization, and recycling at neuromuscular synapses of a Drosophila mutant, shibire. Neuron 28, 941–953 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Lüthi, A. et al. Synaptojanin 1 contributes to maintaining the stability of GABAergic transmission in primary cultures of cortical neurons. J. Neurosci. 21, 9101–9111 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Takahashi, T., Hori, T., Kajikawa, Y. & Tsujimoto, T. The role of GTP-binding protein activity in fast central synaptic transmission. Science 289, 460–463 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Zhang, S. & Trussell, L. O. Voltage clamp analysis of excitatory synaptic transmission in the avian nucleus magnocellularis. J. Physiol. (Lond.) 480, 123–136 (1994).

    Article  CAS  Google Scholar 

  100. Ishikawa, T. & Takahashi, T. Mechanisms underlying presynaptic facilitatory effect of cyclothiazide at the calyx of Held of juvenile rats. J. Physiol. (Lond.) 533, 423–431 (2001).

    Article  CAS  Google Scholar 

  101. Partin, K. M., Fleck, M. W. & Mayer, M. L. AMPA receptor flip/flop mutants affecting deactivation, desensitization, and modulation by cyclothiazide, aniracetam, and thiocyanate. J. Neurosci. 16, 6634–6647 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang, L.-Y. The dynamic range for gain control of NMDA receptor-mediated synaptic transmission at a single synapse. J. Neurosci. 20, RC115 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wadiche, J. I. & Jahr, C. E. Multivesicular release at climbing fiber–Purkinje cell synapses. Neuron 32, 301–313 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Jones, H. C. & Keep, R. F. Brain interstitial fluid calcium concentration during development in the rat: control levels and changes in acute plasma hypercalcaemia. Physiol. Bohemoslov. 37, 213–216 (1988).

    CAS  PubMed  Google Scholar 

  105. Brenowitz, S. & Trussell, L. O. Minimizing synaptic depression by control of release probability. J. Neurosci. 21, 1857–1867 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wu, S. H. & Oertel, D. Maturation of synapses and electrical properties of cells in the cochlear nuclei. Hear. Res. 30, 99–110 (1987).

    Article  CAS  PubMed  Google Scholar 

  107. Spirou, G. A., Brownell, W. E. & Zidanic, M. Recordings from cat trapezoid body and HRP labeling of globular bushy cell axons. J. Neurophysiol. 63, 1169–1190 (1990).

    Article  CAS  PubMed  Google Scholar 

  108. Guinan, J. J. Jr & Li, R. Y.-S. Signal processing in brainstem auditory neurons which receive giant endings (calyces of Held) in the medial nucleus of the trapezoid body of the cat. Hear. Res. 49, 321–334 (1990).

    Article  PubMed  Google Scholar 

  109. Abbott, L. F., Varela, J. A., Sen, K. & Nelson, S. B. Synaptic depression and cortical gain control. Science 275, 220–224 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Malone, B. J. & Semple, M. N. Effects of auditory stimulus context on the representation of frequency in the gerbil inferior colliculus. J. Neurophysiol. 86, 1113–1130 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Landmesser, L. & Pilar, G. The onset and development of transmission in the chick ciliary ganglion. J. Physiol. (Lond.) 222, 691–713 (1972).

    Article  CAS  Google Scholar 

  112. Ramón y Cajal, S. Neuron Theory or Reticular Theory? Objective Evidence of the Anatomical Unity of Nerve Cells (Consejo Superior de Investigaciones Científicas, Instituto Cajal, Madrid, 1954).

    Google Scholar 

  113. Molnar, C. E. & Pfeiffer, R. R. Interpretation of spontaneous spike discharge patterns of neurons in the cochlear nucleus. Proc. IEEE 56, 993–1004 (1968).

    Article  Google Scholar 

  114. Carr, C. E. Processing of temporal information in the brain. Annu. Rev. Neurosci. 16, 223–243 (1993).

    Article  CAS  PubMed  Google Scholar 

  115. Joris, P. X., Smith, P. H. & Yin, T. C. Enhancement of neural synchronization in the anteroventral cochlear nucleus. II. Responses in the tuning curve tail. J. Neurophysiol. 71, 1037–1051 (1994).

    Article  CAS  PubMed  Google Scholar 

  116. Paolini, A. G., FitzGerald, J. V., Burkitt, A. N. & Clark, G. M. Temporal processing from the auditory nerve to the medial nucleus of the trapezoid body in the rat. Hear. Res. 159, 101–116 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Joris, P. X. & Yin, T. C. Envelope coding in the lateral superior olive. III. Comparison with afferent pathways. J. Neurophysiol. 79, 253–269 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Park, T. J., Monsivais, P. & Pollak, G. D. Processing of interaural intensity differences in the LSO: role of interaural threshold differences. J. Neurophysiol. 77, 2863–2878 (1997).

    Article  CAS  PubMed  Google Scholar 

  119. Sanes, D. H. An in vitro analysis of sound localization in the gerbil lateral superior olive. J. Neurosci. 10, 3494–3506 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique von Gersdorff.

Related links

Related links

DATABASES

LocusLink

adenosine receptors

AMPA receptors

GABAB receptor

mGluRs

NMDA receptors

noradrenaline receptors

parvalbumin

FURTHER INFORMATION

auditory processing

calcium and neurotransmitter release

developmental biology of synapse formation

glutamatergic synapses: molecular organization

Henrique von Gersdorff's lab

synaptic plasticity, short term

synaptic vesicle traffic

Glossary

ACTIVE ZONE

A portion of the presynaptic membrane that faces the postsynaptic density across the synaptic cleft. It constitutes the site of synaptic vesicle clustering, docking and transmitter release.

QUANTAL CONTENT

The number of quanta — unitary packets of transmitter — released per action potential.

GAP JUNCTIONS

Cellular specializations that allow the non-selective passage of small molecules between the cytoplasm of adjacent cells. They are formed by channels termed connexons, multimeric complexes of proteins known as connexins. Gap junctions are structural elements of electrical synapses.

POSTSYNAPTIC DENSITY

An electron-dense thickening underneath the postsynaptic membrane at excitatory synapses that contains receptors, structural proteins linked to the actin cytoskeleton and signalling machinery, such as protein kinases and phosphatases.

PRESPIKE

The presynaptic action potential capacitatively coupled to the postsynaptic cell.

PHASE-LOCKING

The firing of neurons preferentially at a certain phase of an amplitude-modulated stimulus.

ELECTROTONIC DISTANCE

The anatomical distance between a channel or a synapse and the recording site, divided by the length constant (the distance at which signal amplitude decreases to 37% of its original size).

FILOPODIA

Long, thin protrusions at the periphery of cells and growth cones. They are composed of F-actin bundles.

FLOP VARIANT OF AMPA RECEPTOR

Two splice variants of AMPA receptor, known as flip and flop, have been characterized. They differ in their response to glutamate, their distribution and their developmental expression.

QUANTAL SIZE

The synaptic response elicited by a single vesicle of transmitter.

DELAYED RELEASE

A period of elevated spontaneous quantal release following an action potential.

CAPACITANCE

The plasma membrane is an excellent insulator and can store electrical charge on its surface. Capacitance is the quantity of charge that must be moved across a unit area of the membrane to produce a unit change in membrane potential. Most plasma membranes have a capacitance of around 1 μF cm−2. As synaptic vesicle fusion increases membrane area, an increase in capacitance can be interpreted as a measure of exocytosis.

SYNAPTOSOME

A preparation of the presynaptic terminal, isolated after subcellular fractionation. This structure retains the anatomical integrity of the terminal and can take up, store and release neurotransmitters.

RIBBON SYNAPSE

Synapses characterized by an electron-dense ribbon or bar in the presynaptic terminal. The ribbon is commonly oriented at a right angle to the membrane and sits just above an evaginated ridge. It is thought that the ribbons help to guide vesicles to the release sites. Ribbon synapses are commonly found in the retina and cochlea of vertebrates.

SHIBIRE MUTANT

Shibire is the Drosophila homologue of dynamin. Accordingly, the shibire mutant shows defects in the recycling of synaptic vesicles.

DYNAMIN

A GTPase that takes part in endocytosis. It seems to be involved in severing the connection between the nascent vesicle and the donor membrane.

NON-STATIONARY NOISE-ANALYSIS METHODS

Methods that make use of fluctuations in biological signals that vary in time to derive information about the underlying elementary events. Such methods can be used, for example, to derive single ion channel current and number from the variance of macroscopic currents.

CAGED COMPOUNDS

Inactive derivatives of biologically functional molecules, which can be transformed into the active compound, usually by photolysis of the precursor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Gersdorff, H., Borst, J. Short-term plasticity at the calyx of held. Nat Rev Neurosci 3, 53–64 (2002). https://doi.org/10.1038/nrn705

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn705

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing