Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Why does remyelination fail in multiple sclerosis?

Key Points

  • Although spontaneous regeneration after central nervous system (CNS) damage is rare, demyelinated CNS axons can undergo remyelination. Remyelination can be very efficient, especially in experimental models. However, in multiple sclerosis (MS) — the most common demyelinating disease of adulthood — remyelination often fails, contributing to clinical deterioration. Devising means by which remyelination can be enhanced or reactivated in MS is a major therapeutic goal that will probably be achieved by understanding how remyelination works and why it fails.

  • Remyelination proceeds in two main stages. The first involves the recruitment of oligodendrocyte progenitor cells (OPCs) by proliferation and possibly migration. The second involves the OPCs engaging demyelinated axons and differentiating into myelin-sheath forming oligodendrocytes. Potentially, remyelination can fail at either of these two stages, both of which become less efficient as a consequence of ageing (which probably contributes to the decline in remyelination efficiency during the course of the disease).

  • Emerging clinical evidence indicates that OPCs might be a target of the disease process; this would have implications for the generation of sufficient OPCs for the recruitment phase. Other histopathological evidence indicates that, in some cases, non-remyelinating lesions are full of OPCs and immature oligodendrocytes that fail to become remyelinating oligodendrocytes, implying a failure of differentiation.

  • What factors govern OPC recruitment and differentiation during remyelination? Developmental studies of myelination have provided valuable clues to the factors that might govern remyelination, although there are differences between the two processes. Nevertheless, developmental studies indicate that many signalling molecules, including growth factors, cytokines and chemokines, neurotransmitters and the extracellular matrix (ECM), are likely to be involved in OPC recruitment; in some instances, supporting evidence has been provided by experimental models of remyelination.

  • Regulators of the differentiation of OPCs into oligodendrocytes include growth factors, ECM, adhesion molecules and the Notch-jagged pathway. Details of the intracellular signalling mechanisms and transcriptional regulation of differentiation have emerged and might provide the basis for pharmacological approaches to manipulating this process. However, the crucial mechanism by which an oligodendrocyte ensheaths axons with a spiral wrap that finally compacts to form the myelin sheath is a fundamental aspect of both myelination and remyelination about which little is known.

  • A picture is emerging of a complex matrix of signals that is required for successful remyelination. This matrix involves a diversity of molecules, fulfilling distinct roles and expressed at critical times during the process. Paradoxically, the inflammatory process that is associated with demyelination might also trigger the cascade of events that creates an environment that promotes remyelination.

  • It is not clear why remyelination fails in MS, but given the complexity of the signalling environment, a hypothesis emerges — the 'dysregulation' hypothesis — in which there is no individual villain of the piece, but rather a breakdown in the regulation of myelination signalling. The future challenge will be to identify the non-redundant trigger factors that create a pro-remyelination environment, and establish whether their manipulation will form the basis of remyelination-enhancing therapies for MS.

Abstract

Multiple sclerosis is a common cause of neurological disability in young adults. The disease is complex — its aetiology is multifactorial and largely unknown; its pathology is heterogeneous; and, clinically, it is difficult to diagnose, manage and treat. However, perhaps its most frustrating aspect is the inadequacy of the healing response of remyelination. This regenerative process generally occurs with great efficiency in experimental models, and sometimes proceeds to completion in multiple sclerosis. But as the disease progresses, the numbers of lesions in which demyelination persists increases, significantly contributing to clinical deterioration. Understanding why remyelination fails is crucial for devising effective methods by which to enhance it.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multiple sclerosis pathology.
Figure 2: Remyelination failure due to inadequate differentiation of oligodendrocyte-lineage cells in areas of demyelination.
Figure 3: Remyelination and remyelination failure in multiple sclerosis.
Figure 4: Creating a favourable environment for remyelination.

Similar content being viewed by others

References

  1. Smith, K. J., Blakemore, W. F. & McDonald, W. I. Central remyelination restores secure conduction. Nature 280, 395–396 (1979).

    CAS  PubMed  Google Scholar 

  2. Jeffery, N. D. & Blakemore, W. F. Locomotor deficits induced by experimental spinal cord demyelination are abolished by spontaneous remyelination. Brain 120, 27–37 (1997).

    PubMed  Google Scholar 

  3. Compston, A. & Coles, A. Multiple sclerosis. Lancet 359, 1221–1231 (2002).

    PubMed  Google Scholar 

  4. Ferguson, B., Matyszak, M. K., Esiri, M. M. & Perry, V. H. Axonal damage in acute multiple sclerosis lesions. Brain 120, 393–399 (1997).

    PubMed  Google Scholar 

  5. Lovas, G., Szilagyi, N., Majtenyi, K., Palkovits, M. & Komoly, S. Axonal changes in chronic demyelinated cervical spinal cord plaques. Brain 123, 308–317 (2000).

    PubMed  Google Scholar 

  6. De Stefano, N. et al. Axonal damage correlates with disability in patients with relapsing–remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 121, 1469–1477 (1998).

    PubMed  Google Scholar 

  7. Kornek, B. et al. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am. J. Pathol. 157, 267–276 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Yao, D.-L., Liu, X., Hudson, L. D. & Webster, H. d. Insulin-like growth factor I treatment reduces demyelination and up-regulates gene expression of myelin-related proteins in experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 92, 6190–6194 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Warrington, A. E. et al. Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a model of multiple sclerosis. Proc. Natl Acad. Sci. USA 97, 6820–6825 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cannella, B. et al. The neuregulin, glial growth factor 2, diminishes autoimmune demyelination and enhances remyelination in a chronic relapsing model for multiple sclerosis. Proc. Natl Acad. Sci. USA 95, 10100–10105 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Stangel, M., Compston, A. & Scolding, N. J. Polyclonal immunoglobulins for intravenous use do not influence the behaviour of cultured oligodendrocytes. J. Neuroimmunol. 96, 228–233 (1999).

    CAS  PubMed  Google Scholar 

  12. Lucchinetti, C. et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47, 707–717 (2000).This paper forms the basis of a new and provocative classification of MS lesions, which indicates that there are likely to be distinct pathogenic mechanisms in MS that have important implications for the likelihood that remyelination will occur.

    CAS  PubMed  Google Scholar 

  13. Prayoonwiwat, N. & Rodriguez, M. The potential for oligodendrocyte proliferation during demyelinating disease. J. Neuropathol. Exp. Neurol. 52, 55–63 (1993).

    CAS  PubMed  Google Scholar 

  14. Targett, M. P. et al. Failure to remyelinate rat axons following transplantation of glial cells obtained from adult human brain. Neuropathol. Appl. Neurobiol. 22, 199–206 (1996).

    CAS  PubMed  Google Scholar 

  15. Keirstead, H. S. & Blakemore, W. F. Identification of post-mitotic oligodendrocytes incapable of remyelination within the demyelinated adult spinal cord. J. Neuropathol. Exp. Neurol. 56, 1191–1201 (1997).

    CAS  PubMed  Google Scholar 

  16. Ludwin, S. K. & Bakker, D. A. Can oligodendrocytes attached to nuclei proliferate? J. Neurosci. 8, 1239–1244 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wood, P. M. & Bunge, R. P. The origin of remyelinating cells in the adult central nervous system: the role of the mature oligodendrocyte. Glia 4, 225–232 (1991).

    CAS  PubMed  Google Scholar 

  18. Franklin, R. J. M. Remyelination — a regenerative process in the CNS. Neuroscientist 5, 184–191 (1999).

    Google Scholar 

  19. Blakemore, W. F. & Keirstead, H. S. The origin of remyelinating cells in the CNS. J. Neuroimmunol. 98, 69–76 (1999).

    CAS  PubMed  Google Scholar 

  20. Mason, J. L., Ye, P., Suzuki, K., D'Ercole, A. J. & Matsushima, G. K. Insulin-like growth factor-1 inhibits mature oligodendrocyte apoptosis during primary demyelination. J. Neurosci. 20, 5703–5708 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Horner, P. J. et al. Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J. Neurosci. 20, 2218–2228 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gensert, J. M. & Goldman, J. E. Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 19, 197–203 (1997).This paper provides some of the most compelling evidence yet that progenitor cells can give rise to remyelinating oligodendrocytes after CNS demyelination.

    CAS  PubMed  Google Scholar 

  23. Carroll, W. M. & Jennings, A. R. Early recruitment of oligodendrocyte precursors in CNS remyelination. Brain 117, 563–578 (1994).

    PubMed  Google Scholar 

  24. Zhang, S. C., Ge, B. & Duncan, I. D. Adult brain retains the potential to generate oligodendroglial progenitors with extensive myelination capacity. Proc. Natl Acad. Sci. USA 96, 4089–4094 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Redwine, J. M. & Armstrong, R. C. In vivo proliferation of oligodendrocyte progenitors expressing PDGF-αR during early remyelination. J. Neurobiol. 37, 413–428 (1998).

    CAS  PubMed  Google Scholar 

  26. Sim, F. J., Zhao, C., Penderis, J. & Franklin, R. J. M. The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. J. Neurosci. 22, 2451–2459 (2002).This paper shows that remyelination can become less efficient as part of the ageing process, a factor that is likely to be relevant to a disease that can be several decades in duration.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Levine, J. M. & Reynolds, R. Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Exp. Neurol. 160, 333–347 (1999).

    CAS  PubMed  Google Scholar 

  28. Cenci di Bello, I., Dawson, M. R. L., Levine, J. M. & Reynolds, R. Generation of oligodendroglial progenitors in acute inflammatory demyelinating lesions of the rat brain stem is stimulated by demyelination rather than inflammation. J. Neurocytol. 28, 365–381 (1999).

    Google Scholar 

  29. Mason, J. L. et al. Mature oligodendrocyte apoptosis precedes IGF-I production and oligodendrocyte progenitor accumulation and differentiation during demyelination/remyelination. J. Neurosci. Res. 61, 251–262 (2000).

    CAS  PubMed  Google Scholar 

  30. Dawson, M. R. L., Levine, J. M. & Reynolds, R. NG-2-expressing cells in the central nervous system: are they oligodendroglial progenitors? J. Neurosci. Res. 61, 471–479 (2000).

    CAS  PubMed  Google Scholar 

  31. Blakemore, W. F. Observations on oligodendrocyte degeneration, the resolution of status spongiosus and remyelination in cuprizone intoxication in mice. J. Neurocytol. 1, 413–426 (1972).

    CAS  PubMed  Google Scholar 

  32. Ludwin, S. K. An autoradiographic study of cellular proliferation in remyelination of the central nervous system. Am. J. Pathol. 95, 683–676 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Carroll, W. M., Jennings, A. R. & Mastaglia, F. L. The origin of remyelinating oligodendrocytes in antiserum-mediated demyelinative optic neuropathy. Brain 113, 953–973 (1990).

    PubMed  Google Scholar 

  34. Nait-Oumesmar, B. et al. Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur. J. Neurosci. 11, 4357–4366 (1999).The subventricular zone is a progenitor-rich region that is now attracting interest as a potential source of new neurons following neuronal loss; this paper indicates that cells derived from this region can also provide new oligodendrocytes for remyelination.

    CAS  PubMed  Google Scholar 

  35. Gensert, J. M. & Goldman, J. E. Heterogeneity of cycling glial progenitors in the adult mammalian cortex and white matter. J. Neurobiol. 48, 75–86 (2001).

    CAS  PubMed  Google Scholar 

  36. Mason, J. L. & Goldman, J. E. A2B5+ and O4+ cycling progenitors in the adult forebrain white matter respond differentially to PDGF-AA, FGF-2, and IGF-1. Mol. Cell. Neurosci. 20, 30–42 (2002).

    CAS  PubMed  Google Scholar 

  37. Franklin, R. J. M., Gilson, J. M. & Blakemore, W. F. Local recruitment of remyelinating cells in the repair of demyelination in the central nervous system. J. Neurosci. Res. 50, 337–344 (1997).

    CAS  PubMed  Google Scholar 

  38. Ludwin, S. K. & Sternberger, N. H. An immunohistochemical study of myelin proteins during remyelination in the central nervous system. Acta Neuropathol. 63, 240–248 (1984).

    CAS  PubMed  Google Scholar 

  39. Morell, P. et al. Gene expression in brain during cuprizone-induced demyelination and remyelination. Mol. Cell. Neurosci. 12, 220–227 (2000).

    Google Scholar 

  40. Capello, E., Voskuhl, R. R., McFarland, H. F. & Raine, C. S. Multiple sclerosis: re-expression of a developmental gene in chronic lesions correlates with remyelination. Ann. Neurol. 41, 797–805 (1997).

    CAS  PubMed  Google Scholar 

  41. Sim, F. J., Hinks, G. L. & Franklin, R. J. M. The re-expression of the homeodomain transcription factor Gtx during remyelination of experimentally-induced demyelinating lesions in young and old rat brain. Neuroscience 100, 131–139 (2000).

    CAS  PubMed  Google Scholar 

  42. Shields, S. A., Gilson, J. M., Blakemore, W. F. & Franklin, R. J. M. Remyelination occurs as extensively but more slowly in old rats compared to young rats following gliotoxin-induced CNS demyelination. Glia 28, 77–83 (1999).

    CAS  PubMed  Google Scholar 

  43. Franklin, R. J. M., Zhao, C. & Sim, F. J. Ageing and CNS remyelination. Neuroreport 13, 923–928 (2002).

    PubMed  Google Scholar 

  44. Archelos, J. J. et al. Isolation and characterization of an oligodendrocyte precursor-derived B-cell epitope in multiple sclerosis. Ann. Neurol. 43, 15–24 (1998).

    CAS  PubMed  Google Scholar 

  45. Niehaus, A. et al. Patients with active relapsing–remitting multiple sclerosis synthesize antibodies recognizing oligodendrocyte progenitor cell surface protein: implications for remyelination. Ann. Neurol. 48, 362–371 (2000).References 44 and 45 provide evidence that the OPC might be a direct target of the demyelinating process in MS patients, an observation that has clear implications for remyelination.

    CAS  PubMed  Google Scholar 

  46. Li, G., Crang, A. J., Rundle, J. L. & Blakemore, W. F. Oligodendrocyte progenitor cells in the adult rat CNS express myelin oligodendrocyte protein (MOG). Brain Pathol. (in the press).

  47. Johnson, E. S. & Ludwin, S. K. The demonstration of recurrent demyelination and remyelination of axons in the central nervous system. Acta Neuropathol. 53, 93–98 (1981).

    CAS  PubMed  Google Scholar 

  48. Prineas, J. W. et al. Multiple sclerosis: pathology of recurrent lesions. Brain 116, 681–693 (1993).

    PubMed  Google Scholar 

  49. Chari, D. M. & Blakemore, W. F. Efficient recolonisation of progenitor-depleted areas of the CNS by adult oligodendrocyte progenitor cells. Glia 37, 307–313 (2002).The ability of OPCs efficiently to repopulate areas of the CNS from which they have been depleted calls into question the view that remyelination invariably fails because of OPC depletion.

    PubMed  Google Scholar 

  50. Ludwin, S. K. Chronic demyelination inhibits remyelination in the central nervous system. Lab. Invest. 43, 382–387 (1980).

    CAS  PubMed  Google Scholar 

  51. Linington, C., Engelhardt, B., Kapocs, G. & Lassman, H. Induction of persistently demyelinated lesions in the rat following the repeated adoptive transfer of encephalitogenic T cells and demyelinating antibody. J. Neuroimmunol. 40, 219–224 (1992).

    CAS  PubMed  Google Scholar 

  52. Chang, A., Nishiyama, A., Peterson, J., Prineas, J. & Trapp, B. D. NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J. Neurosci. 20, 6404–6412 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lucchinetti, C. et al. A quantitative analysis of oligodendrocytes in multiple sclerosis lesions — a study of 113 cases. Brain 122, 2279–2295 (1999).

    PubMed  Google Scholar 

  54. Wolswijk, G. Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J. Neurosci. 18, 601–609 (1998).This important paper first drew attention to the concept that remyelination can fail in MS because immature cells of the oligodendrocyte lineage that are present in areas of demyelination might fail to differentiate into remyelinating oligodendrocytes.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Scolding, N. et al. Oligodendrocyte progenitors are present in the normal adult human CNS and in the lesions of multiple sclerosis. Brain 121, 2221–2228 (1998).

    PubMed  Google Scholar 

  56. Maeda, Y. et al. Platelet-derived growth factor-α receptor-positive oligodendroglia are frequent in multiple sclerosis lesions. Ann. Neurol. 49, 776–785 (2001).

    CAS  PubMed  Google Scholar 

  57. Chang, A., Tourtellotte, W. W., Rudick, R. & Trapp, B. D. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N. Engl. J. Med. 346, 165–173 (2002).

    PubMed  Google Scholar 

  58. Richardson, W. D. in Glial Cell Development (eds Jessen, K. R. & Richardson, W. D.) 21–54 (Oxford Univ. Press, Oxford, UK, 2001).

    Google Scholar 

  59. Robinson, S., Tani, M., Strieter, R. M., Ransohoff, R. N. & Miller, R. H. The chemokine growth-regulated oncogene-α promotes spinal cord oligodendrocyte precursor proliferation. J. Neurosci. 18, 10457–10463 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Benveniste, E. N. & Merrill, J. E. Stimulation of oligodendroglial proliferation and maturation by interleukin-2. Nature 321, 610–613 (1986).

    CAS  PubMed  Google Scholar 

  61. Kiernan, B. W., Götz, B., Faissner, A. & ffrench-Constant, C. Tenascin-C inhibits oligodendrocyte precursor cell migration by both adhesion-dependent and adhesion-independent mechanisms. Mol. Cell. Neurosci. 7, 322–335 (1996).

    CAS  PubMed  Google Scholar 

  62. Blaschuk, K. L., Frost, E. E. & ffrench-Constant, C. The regulation of proliferation and differentiation in oligodendrocyte progenitor cells by αV integrins. Development 127, 1961–1969 (2000).

    CAS  PubMed  Google Scholar 

  63. Garcion, E., Faissner, A. & ffrench-Constant, C. Knockout mice reveal a contribution of the extracellular matrix molecule tenascin-C to neural precursor proliferation and migration. Development 128, 2485–2496 (2001).

    CAS  PubMed  Google Scholar 

  64. Wolswijk, G. & Noble, M. Cooperation between PDGF and FGF converts slowly dividing O-2Aadult progenitors to rapidly dividing cells with characteristics of O-2Aperinatal progenitor cells. J. Cell Biol. 118, 889–900 (1992).

    CAS  PubMed  Google Scholar 

  65. Shi, J. Y., Marinovich, A. & Barres, B. A. Purification and characterization of adult oligodendrocyte precursor cells from the rat optic nerve. J. Neurosci. 18, 4627–4636 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Jiang, F., Frederick, T. J. & Wood, T. L. IGF-I synergizes with FGF-2 to stimulate oligodendrocyte progenitor entry into the cell cycle. Dev. Biol. 232, 414–423 (2001).

    CAS  PubMed  Google Scholar 

  67. Robinson, S. & Miller, R. Environmental enhancement of growth factor-mediated oligodendrocyte precursor proliferation. Mol. Cell. Neurosci. 8, 38–52 (1996).

    CAS  PubMed  Google Scholar 

  68. Baron, W., Shattil, S. J. & ffrench-Constant, C. The oligodendrocyte precursor mitogen PDGF stimulates proliferation by activation of αvβ3 integrins. EMBO J. 21, 1957–1966 (2002).This paper reveals how different signalling systems can be intimately linked, highlighting the potential complexity of the signals that regulate OPC behaviour during remyelination.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Tourbah, A. et al. Endogenous aFGF expression and cellular changes after a demyelinating lesion in the spinal cord of adult normal mice: immunohistochemical study. J. Neurosci. Res. 33, 47–59 (1992).

    CAS  PubMed  Google Scholar 

  70. Hinks, G. L. & Franklin, R. J. M. Distinctive patterns of PDGF-A, FGF-2, IGF-I and TGF-β1 gene expression during remyelination of experimentally-induced spinal cord demyelination. Mol. Cell. Neurosci. 14, 153–168 (1999).

    CAS  PubMed  Google Scholar 

  71. Messersmith, D. J., Murtie, J. C., Le, T. Q., Frost, E. E. & Armstrong, R. C. Fibroblast growth factor 2 (FGF2) and FGF receptor expression in an experimental demyelinating disease with extensive remyelination. J. Neurosci. Res. 62, 241–256 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hinks, G. L. & Franklin, R. J. M. Delayed changes in growth factor gene expression during slow remyelination in the CNS of aged rats. Mol. Cell. Neurosci. 16, 542–556 (2000).

    CAS  PubMed  Google Scholar 

  73. Nait-Oumesmar, B. et al. Expression of the highly polysialylated neural cell adhesion molecule during postnatal myelination and following chemically induced demyelination of the adult mouse spinal cord. Eur. J. Neurosci. 7, 480–491 (1995).

    CAS  PubMed  Google Scholar 

  74. Calver, A. R. et al. Oligodendrocyte population dynamics and the role of PDGF in vivo. Neuron 20, 869–882 (1998).

    CAS  PubMed  Google Scholar 

  75. Fruttiger, M. et al. Defective oligodendrocyte development and severe hypomyelination in PDGF-A knockout mice. Development 126, 457–467 (1999).

    CAS  PubMed  Google Scholar 

  76. Ye, P., Carson, J. & D'Ercole, A. J. In vivo actions of insulin-like growth factor-I (IGF-I) on brain myelination: studies of IGF-I and IGF binding protein-1 (IGFBP-1) transgenic mice. J. Neurosci. 15, 7344–7356 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Goddard, D. R., Berry, M. & Butt, A. M. In vivo actions of fibroblast growth factor-2 and insulin-like growth factor-I on oligodendrocyte development and myelination in the central nervous system. J. Neurosci. Res. 57, 74–85 (1999).

    CAS  PubMed  Google Scholar 

  78. Carson, M. J., Behringer, R. R., Brinster, R. L. & McMorris, F. A. Insulin-like growth factor I increases brain growth and central nervous system myelination in transgenic mice. Neuron 10, 729–740 (1993).

    CAS  PubMed  Google Scholar 

  79. Komoly, S., Hudson, L. D., Webster, H. d. & Bondy, C. A. Insulin-like growth factor I gene expression is induced in astrocytes during experimental demyelination. Proc. Natl Acad. Sci. USA 89, 1894–1898 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Gveric, D., Cuzner, M. L. & Newcombe, J. Insulin-like growth factors and binding proteins in multiple sclerosis plaques. Neuropathol. Appl. Neurobiol. 25, 215–225 (1999).

    CAS  PubMed  Google Scholar 

  81. Rosenthal, S. M. & Cheng, Z. Q. Opposing early and late effects of insulin-like growth factor I on differentiation and the cell cycle regulatory retinoblastoma protein in skeletal myoblasts. Proc. Natl Acad. Sci. USA 92, 10307–10311 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Barres, B. A. & Raff, M. C. Control of oligodendrocyte number in the developing rat optic nerve. Neuron 12, 935–942 (1994).

    CAS  PubMed  Google Scholar 

  83. Mckinnon, R. D., Piras, G., Ida, J. A. Jr & Dubois-Dalcq, M. A role for TGF-β in oligodendrocyte differentiation. J. Cell Biol. 121, 1397–1407 (1993).

    CAS  PubMed  Google Scholar 

  84. O'Leary, M. T., Hinks, G. L., Charlton, H. M. & Franklin, R. J. M. Increasing local levels of IGF-I mRNA expression using adenoviral vectors does not alter oligodendrocyte remyelination in the CNS of aged rats. Mol. Cell. Neurosci. 19, 32–42 (2002).

    CAS  PubMed  Google Scholar 

  85. Mckinnon, R. D., Matsui, T., Dubois-Dalcq, M. & Aaronson, S. A. FGF modulates the PDGF-driven pathway of oligodendrocyte development. Neuron 5, 603–614 (1990).

    CAS  PubMed  Google Scholar 

  86. Goddard, D. R., Berry, M., Kirvell, S. L. & Butt, A. M. Fibroblast growth factor-2 inhibits myelin production by oligodendrocytes in vivo. Mol. Cell. Neurosci. 18, 557–569 (2001).

    CAS  PubMed  Google Scholar 

  87. Canoll, P. D. et al. GGF/neuregulin is a neuronal signal that promotes the proliferation and survival and inhibits the differentiation of oligodendrocyte progenitors. Neuron 17, 229–243 (1996).

    CAS  PubMed  Google Scholar 

  88. Park, S. K., Miller, R., Krane, I. & Vartanian, T. The erbB2 gene is required for the development of terminally differentiated spinal cord oligodendrocytes. J. Cell Biol. 154, 1245–1258 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Viehover, A., Miller, R. H., Park, S. K., Fischbach, G. & Vartanian, T. Neuregulin: an oligodendrocyte growth factor absent in active multiple sclerosis lesions. Dev. Neurosci. 23, 377–386 (2001).

    CAS  PubMed  Google Scholar 

  90. Gallo, V. et al. Oligodendrocyte progenitor cell proliferation and lineage progression are regulated by glutamate receptor-mediated K+ channel block. J. Neurosci. 16, 2659–2670 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ghiani, C. A. et al. Neurotransmitter receptor activation triggers p27Kip1 and p21CIP1 accumulation and G1 cell cycle arrest in oligodendrocyte progenitors. Development 126, 1077–1090 (1999).

    CAS  PubMed  Google Scholar 

  92. Wang, S. et al. Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 21, 63–75 (1998).

    PubMed  Google Scholar 

  93. Givogri, M. I. et al. Central nervous system myelination in mice with deficient expression of Notch1 receptor. J. Neurosci. Res. 67, 309–320 (2002).

    CAS  PubMed  Google Scholar 

  94. Charles, P. et al. Negative regulation of central nervous system myelination by polysialylated-neural cell adhesion molecule. Proc. Natl Acad. Sci. USA 97, 7585–7590 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Charles, P. et al. Re-expression of PSA–NCAM by demyelinated axons: an inhibitor of remyelination in multiple sclerosis? Brain (in the press).References 94 and 95 provide a potential mechanism whereby demyelinated axons might have a crucial role in determining whether OPCs associated with them can differentiate into remyelinating cells.

  96. Demerens, C. et al. Induction of myelination in the central nervous system by electrical activity. Proc. Natl Acad. Sci. USA 93, 9887–9892 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Buttery, P. C. & ffrench-Constant, C. Laminin-2/integrin interactions enhance myelin membrane formation by oligodendrocytes. Mol. Cell. Neurosci. 14, 199–212 (1999).

    CAS  PubMed  Google Scholar 

  98. Relvas, J. B. et al. Expression of dominant-negative and chimeric subunits reveals an essential role for β1 integrin during myelination. Curr. Biol. 11, 1039–1043 (2001).

    CAS  PubMed  Google Scholar 

  99. Sobel, R. A., Chen, M., Maeda, A. & Hinojoza, J. R. Vitronectin and integrin vitronectin receptor localization in multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 54, 202–213 (1995).

    CAS  PubMed  Google Scholar 

  100. Gutowski, N. J., Newcombe, J. & Cuzner, M. L. Tenascin-R and C in multiple sclerosis lesions: relevance to extracellular matrix remodelling. Neuropathol. Appl. Neurobiol. 25, 207–214 (1999).

    CAS  PubMed  Google Scholar 

  101. Durand, B., Gao, F. B. & Raff, M. Accumulation of the cyclin-dependent kinase inhibitor p27/Kip1 and the timing of oligodendrocyte differentiation. EMBO J. 16, 306–317 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Durand, B., Fero, M. L., Roberts, J. M. & Raff, M. C. p27Kip1 alters the response of cells to mitogen and is part of a cell-intrinsic timer that arrests the cell cycle and initiates differentiation. Curr. Biol. 8, 431–440 (1998).

    CAS  PubMed  Google Scholar 

  103. Gao, F. B., Apperly, J. & Raff, M. Cell-intrinsic timers and thyroid hormone regulate the probability of cell-cycle withdrawal and differentiation of oligodendrocyte precursor cells. Dev. Biol. 197, 54–66 (1998).

    CAS  PubMed  Google Scholar 

  104. Stolt, C. C. et al. Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev. 16, 165–170 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang, S., Sdrulla, A., Johnson, J. E., Yokota, Y. & Barres, B. A. A role for the helix–loop–helix protein Id2 in the control of oligodendrocyte differentiation. Neuron 29, 603–614 (2001).

    CAS  PubMed  Google Scholar 

  106. Kondo, T. & Raff, M. The Id4 HLH protein and the timing of oligodendrocyte differentiation. EMBO J. 19, 1998–2007 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Kondo, T. & Raff, M. Basic helix–loop–helix proteins and the timing of oligodendrocyte differentiation. Development 127, 2989–2998 (2000).

    CAS  PubMed  Google Scholar 

  108. Armstrong, R. C., Kim, J. G. & Hudson, L. D. Expression of myelin transcription factor I (MyTI), a 'zinc-finger' DNA-binding protein, in developing oligodendrocytes. Glia 14, 303–321 (1995).

    CAS  PubMed  Google Scholar 

  109. FitzGerald, U. F. & Barnett, S. C. AP-1 activity during the growth, differentiation, and death of O-2A lineage cells. Mol. Cell. Neurosci. 16, 453–469 (2000).

    CAS  PubMed  Google Scholar 

  110. Awatramani, R. et al. Evidence that the homeodomain protein Gtx is involved in the regulation of oligodendrocyte myelination. J. Neurosci. 17, 6657–6668 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Saluja, I., Granneman, J. G. & Skoff, R. P. PPAR δ agonists stimulate oligodendrocyte differentiation in tissue culture. Glia 33, 191–204 (2001).

    CAS  PubMed  Google Scholar 

  112. Lu, Q. R. et al. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109, 75–86 (2002).

    CAS  PubMed  Google Scholar 

  113. Prineas, J. W. et al. Multiple sclerosis: oligodendrocyte proliferation and differentiation in fresh lesions. Lab. Invest. 61, 489–503 (1989).

    CAS  PubMed  Google Scholar 

  114. Prineas, J. W., Barnard, R. O., Kwon, E. E., Sharer, L. R. & Cho, E.-S. Multiple sclerosis: remyelination of nascent lesions. Ann. Neurol. 33, 137–151 (1993).

    CAS  PubMed  Google Scholar 

  115. Raine, C. S. & Wu, E. Multiple sclerosis: remyelination in acute lesions. J. Neuropathol. Exp. Neurol. 52, 199–204 (1993).

    CAS  PubMed  Google Scholar 

  116. Wolswijk, G. Oligodendrocyte precursor cells in the demyelinated multiple sclerosis spinal cord. Brain 125, 338–349 (2002).

    PubMed  Google Scholar 

  117. Brusa, A., Jones, S. J. & Plant, G. T. Long-term remyelination after optic neuritis: A 2-year visual evoked potential and psychophysical serial study. Brain 124, 468–479 (2001).

    CAS  PubMed  Google Scholar 

  118. Graca, D. L. & Blakemore, W. F. Delayed remyelination in the rat spinal cord following ethidium bromide injection. Neuropathol. Appl. Neurobiol. 12, 593–605 (1986).

    CAS  PubMed  Google Scholar 

  119. Kotter, M. R., Setzu, A., Sim, F. J., van Rooijen, N. & Franklin, R. J. M. Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. Glia 35, 204–212 (2001).

    CAS  PubMed  Google Scholar 

  120. Loughlin, A. J. et al. Myelination and remyelination of aggregate rat brain cell cultures enriched with macrophages. J. Neurosci. Res. 47, 384–392 (1997).

    CAS  PubMed  Google Scholar 

  121. Mason, J. L., Suzuki, K., Chaplin, D. D. & Matsushima, G. K. Interleukin-1β promotes repair of the CNS. J. Neurosci. 21, 7046–7052 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Arnett, H. A. et al. TNFα promotes proliferation of oligodendrocyte progenitors and remyelination. Nature Neurosci. 4, 1116–1122 (2001).References 121 and 122 provide experimental evidence of the importance of an appropriately regulated inflammatory response for efficient remyelination to occur.

    CAS  PubMed  Google Scholar 

  123. Robinson, S. & Miller, R. H. Contact with central nervous system myelin inhibits oligodendrocyte progenitor maturation. Dev. Biol. 216, 359–368 (1999).

    CAS  PubMed  Google Scholar 

  124. Shamash, S., Reichert, F. & Rotshenker, S. The cytokine network of Wallerian degeneration: tumor necrosis factor-α, interleukin-1α, and interleukin-1β. J. Neurosci. 22, 3052–3060 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Ashcroft, G. S. et al. Secretory leukocyte protease inhibitor mediates non-redundant functions necessary for normal wound healing. Nature Med. 6, 1147–1153 (2000).This paper, although not directly concerned with remyelination, establishes a concept of broad relevance. That is, the existence of non-redundant signalling molecules expressed early in regeneration that trigger a cascade of subsequent events leading to the creation of a pro-regenerative environment.

    CAS  PubMed  Google Scholar 

  126. Michalopoulos, G. K. & DeFrances, M. C. Liver regeneration. Science 276, 60–66 (1997).

    CAS  PubMed  Google Scholar 

  127. Chari, D. M. & Blakemore, W. F. New insights into remyelination failure in multiple sclerosis: implications for glial cell transplantation. Multiple Sclerosis 8, 271–277 (2002).

    CAS  PubMed  Google Scholar 

  128. Fok-Seang, J., Mathews, G. A., ffrench–Constant, C., Trotter, J. & Fawcett, J. W. Migration of oligodendrocyte precursors on astrocytes and meningeal cells. Dev. Biol. 171, 1–15 (1995).

    CAS  PubMed  Google Scholar 

  129. Groves, A. K., Entwistle, A., Jat, P. S. & Noble, M. The characterization of astrocyte cell lines that display properties of glial scar tissue. Dev. Biol. 159, 87–104 (1993).

    CAS  PubMed  Google Scholar 

  130. Jurevics, H. et al. Alterations in metabolism and gene expression in brain regions during cuprizone-induced demyelination and remyelination. J. Neurochem. 82, 126–136 (2002).

    CAS  PubMed  Google Scholar 

  131. Compston, A. in McAlpine's Multiple Sclerosis (eds Compston, A. et al.) 3–44 (Churchill Livingstone, London, UK, 1998).

    Google Scholar 

  132. Bunge, M. B., Bunge, R. P. & Ris, H. Ultrastructural study of remyelination in an experimental lesion in the adult cat spinal cord. J. Biophys. Biochem. Cytol. 10, 67–94 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Wolswijk, G., Riddle, P. N. & Noble, M. Platelet-derived growth factor is mitogenic for O-2Aadult progenitor cells. Glia 4, 495–503 (1991).

    CAS  PubMed  Google Scholar 

  134. Franklin, R. J. M. & Hinks, G. L. Understanding CNS remyelination — clues from developmental and regeneration biology. J. Neurosci. Res. 58, 207–213 (1999).

    CAS  PubMed  Google Scholar 

  135. Wolswijk, G. & Noble, M. Identification of an adult-specific glial progenitor cell. Development 105, 387–400 (1989).

    CAS  PubMed  Google Scholar 

  136. Adams, C. W. M. A Colour Atlas of Multiple Sclerosis and Other Myelin Disorders (Wolfe Medical Publications, London, 1989).

    Google Scholar 

Download references

Acknowledgements

I am grateful to M. Stidworthy and C. ffrench-Constant for their helpful comments on the manuscript, and to A. Chang and B. Trapp for providing the image in figure 2b.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

FGF

Gal-C

GGF2

Gtx

Hes5

Id1

Id2

Id4

IGF1

IL-1β

β1 integrin

β2 integrin

β5 integrin

jagged

Mash1

MBP

MOG

MyT1

NG2

Notch1

Olig1

p27

PDGF

PDGF-αR

PLP

PPAR-δ

PSA-NCAM

Sox10

tenascin-C

tenascin-R

TGF-β1

TNF-α

TRβ1

vitronectin

OMIM

multiple sclerosis

FURTHER INFORMATION

Encyclopedia of Life Sciences

axons

myelin and action potential propagation

oligodendrocytes

Glossary

SALTATORY CONDUCTION

A process of rapid impulse conduction that is conferred on axons by myelin sheaths in which the generation of an action potential leaps from one node (the exposed region of the axons between adjacent myelin sheaths) to the next.

ZINC FINGER

A protein module in which cysteine or cysteine–histidine residues coordinate a zinc ion. Zinc fingers are often used in DNA recognition and in protein–protein interactions.

PARACRINE SIGNALLING

This process involves cells secreting molecules that act on other cells in their immediate neighbourhood that express the appropriate receptors, rather than acting on the same cell (autocrine signalling) or on remote cells (endocrine signalling).

BASIC HELIX–LOOP–HELIX

A structural motif present in many transcription factors that is characterized by two α-helices separated by a loop. The helices mediate dimerization, and the adjacent basic region is required for DNA binding.

HOMEODOMAIN

A 60-amino-acid DNA-binding domain that comprises three α-helices.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franklin, R. Why does remyelination fail in multiple sclerosis?. Nat Rev Neurosci 3, 705–714 (2002). https://doi.org/10.1038/nrn917

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn917

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing