Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of Slo1 BK channels by Mg2+ coordinated between the voltage sensor and RCK1 domains

Abstract

The voltage-sensor domain (VSD) and the ligand sensor (cytoplasmic domain) of BK channels synergistically control channel activities, thereby integrating electrical and chemical signals for cell function. Studies show that intracellular Mg2+ mediates the interaction between these sensory domains to activate the channel through an electrostatic interaction with the VSD. Here we report that Mg2+ binds to a site that consists of amino acid side chains from both the VSD (Asp99 and Asn172) and the cytoplasmic domain (Glu374 and Glu399). For each Mg2+ binding site, the residues in the VSD and those in the cytoplasmic domain come from neighboring subunits. These results suggest that the VSD and the cytoplasmic domains from different subunits may interact during channel gating, and the packing of VSD or the RCK1 domain to the pore in BK channels differ from that in Kv1.2 or MthK channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mg2+ coordinates in the cytoplasmic domain of the mouse Slo1 channel.
Figure 2: D99A abolishes Mg2+ sensitivity by preventing Mg2+ binding.
Figure 3: Asp99 is spatially close to the cytoplasmic part of the Mg2+ binding site.
Figure 4: The side chain carboxylate or carbonyl group of residue 99 is required for Mg2+ coordination.
Figure 5: Asn172 may contribute to Mg2+ coordination.
Figure 6: Asp99 and Glu374 in a Mg2+ binding site are not from the same subunit.
Figure 7: Asp99 and Asn172, and Glu374 and Glu399, may come from neighboring subunits to form a Mg2+ binding site.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hille, B. Ion Channels Of Excitable Membranes (Sinauer, Sunderland, MA, 2001).

    Google Scholar 

  2. Long, S.B., Campbell, E.B. & Mackinnon, R. Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309, 903–908 (2005).

    Article  CAS  Google Scholar 

  3. Jiang, Y. et al. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515–522 (2002).

    Article  CAS  Google Scholar 

  4. Miyazawa, A., Fujiyoshi, Y. & Unwin, N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 423, 949–955 (2003).

    Article  CAS  Google Scholar 

  5. Latorre, R. & Brauchi, S. Large conductance Ca2+-activated K+ (BK) channel: activation by Ca2+ and voltage. Biol. Res. 39, 385–401 (2006).

    Article  CAS  Google Scholar 

  6. Magleby, K.L. Gating mechanism of BK (Slo1) channels: so near, yet so far. J. Gen. Physiol. 121, 81–96 (2003).

    Article  CAS  Google Scholar 

  7. Salkoff, L., Butler, A., Ferreira, G., Santi, C. & Wei, A. High-conductance potassium channels of the SLO family. Nat. Rev. Neurosci. 7, 921–931 (2006).

    Article  CAS  Google Scholar 

  8. Hou, S., Xu, R., Heinemann, S.H. & Hoshi, T. Reciprocal regulation of the Ca2+ and H+ sensitivity in the SLO1 BK channel conferred by the RCK1 domain. Nat. Struct. Mol. Biol. 15, 403–410 (2008).

    Article  CAS  Google Scholar 

  9. Hou, S., Xu, R., Heinemann, S.H. & Hoshi, T. The RCK1 high-affinity Ca2+ sensor confers carbon monoxide sensitivity to Slo1 BK channels. Proc. Natl. Acad. Sci. USA 105, 4039–4043 (2008).

    Article  CAS  Google Scholar 

  10. Tang, X.D. et al. Haem can bind to and inhibit mammalian calcium-dependent Slo1 BK channels. Nature 425, 531–535 (2003).

    Article  CAS  Google Scholar 

  11. Zeng, X.H., Xia, X.M. & Lingle, C.J. Divalent cation sensitivity of BK channel activation supports the existence of three distinct binding sites. J. Gen. Physiol. 125, 273–286 (2005).

    Article  CAS  Google Scholar 

  12. Shi, J. et al. Mechanism of magnesium activation of calcium-activated potassium channels. Nature 418, 876–880 (2002).

    Article  CAS  Google Scholar 

  13. Xia, X.M., Zeng, X. & Lingle, C.J. Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature 418, 880–884 (2002).

    Article  CAS  Google Scholar 

  14. Yang, H. et al. Mg2+ mediates interaction between the voltage sensor and cytosolic domain to activate BK channels. Proc. Natl. Acad. Sci. USA 104, 18270–18275 (2007).

    Article  CAS  Google Scholar 

  15. Ledoux, J., Werner, M.E., Brayden, J.E. & Nelson, M.T. Calcium-activated potassium channels and the regulation of vascular tone. Physiology (Bethesda) 21, 69–78 (2006).

    CAS  Google Scholar 

  16. Toro, L., Wallner, M., Meera, P. & Tanaka, Y. Maxi-KCa, a unique member of the voltage-gated K channel superfamily. News Physiol. Sci. 13, 112–117 (1998).

    CAS  PubMed  Google Scholar 

  17. Fettiplace, R. & Fuchs, P.A. Mechanisms of hair cell tuning. Annu. Rev. Physiol. 61, 809–834 (1999).

    Article  CAS  Google Scholar 

  18. Du, W. et al. Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat. Genet. 37, 733–738 (2005).

    Article  CAS  Google Scholar 

  19. Ma, Z., Lou, X.J. & Horrigan, F.T. Role of charged residues in the S1–S4 voltage sensor of BK channels. J. Gen. Physiol. 127, 309–328 (2006).

    Article  CAS  Google Scholar 

  20. Jiang, Y., Pico, A., Cadene, M., Chait, B.T. & MacKinnon, R. Structure of the RCK domain from the E. coli K+ channel and demonstration of its presence in the human BK channel. Neuron 29, 593–601 (2001).

    Article  CAS  Google Scholar 

  21. Fodor, A.A. & Aldrich, R.W. Statistical limits to the identification of ion channel domains by sequence similarity. J. Gen. Physiol. 127, 755–766 (2006).

    Article  CAS  Google Scholar 

  22. Yang, H., Hu, L., Shi, J. & Cui, J. Tuning magnesium sensitivity of BK channels by mutations. Biophys. J. 91, 2892–2900 (2006).

    Article  CAS  Google Scholar 

  23. Dudev, T. & Lim, C. Principles governing Mg, Ca, and Zn binding and selectivity in proteins. Chem. Rev. 103, 773–788 (2003).

    Article  CAS  Google Scholar 

  24. Hu, L., Yang, H., Shi, J. & Cui, J. Effects of multiple metal binding sites on calcium and magnesium-dependent activation of BK channels. J. Gen. Physiol. 127, 35–50 (2006).

    Article  CAS  Google Scholar 

  25. Horrigan, F.T. & Aldrich, R.W. Allosteric voltage gating of potassium channels II. Mslo channel gating charge movement in the absence of Ca2+. J. Gen. Physiol. 114, 305–336 (1999).

    Article  CAS  Google Scholar 

  26. Horrigan, F.T. & Aldrich, R.W. Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels. J. Gen. Physiol. 120, 267–305 (2002).

    Article  CAS  Google Scholar 

  27. Horrigan, F.T. & Ma, Z. Mg2+ enhances voltage sensor/gate coupling in BK channels. J. Gen. Physiol. 131, 13–32 (2008).

    Article  CAS  Google Scholar 

  28. Hazes, B. & Dijkstra, B.W. Model building of disulfide bonds in proteins with known three-dimensional structure. Protein Eng. 2, 119–125 (1988).

    Article  CAS  Google Scholar 

  29. Flynn, G.E. & Zagotta, W.N. Conformational changes in S6 coupled to the opening of cyclic nucleotide-gated channels. Neuron 30, 689–698 (2001).

    Article  CAS  Google Scholar 

  30. Long, S.B., Campbell, E.B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005).

    Article  CAS  Google Scholar 

  31. Wallner, M., Meera, P. & Toro, L. Determinant for β-subunit regulation in high-conductance voltage-activated and Ca2+-sensitive K+ channels: an additional transmembrane region at the N terminus. Proc. Natl. Acad. Sci. USA 93, 14922–14927 (1996).

    Article  CAS  Google Scholar 

  32. Cox, D.H., Cui, J. & Aldrich, R.W. Allosteric gating of a large conductance Ca-activated K+ channel. J. Gen. Physiol. 110, 257–281 (1997).

    Article  CAS  Google Scholar 

  33. Dudev, T., Lin, Y.L., Dudev, M. & Lim, C. First-second shell interactions in metal binding sites in proteins: a PDB survey and DFT/CDM calculations. J. Am. Chem. Soc. 125, 3168–3180 (2003).

    Article  CAS  Google Scholar 

  34. Shi, J. & Cui, J. Intracellular Mg2+ enhances the function of BK-type Ca2+-activated K+ channels. J. Gen. Physiol. 118, 589–606 (2001).

    Article  CAS  Google Scholar 

  35. Zhang, X., Solaro, C.R. & Lingle, C.J. Allosteric regulation of BK channel gating by Ca2+ and Mg2+ through a nonselective, low affinity divalent cation site. J. Gen. Physiol. 118, 607–636 (2001).

    Article  CAS  Google Scholar 

  36. Zhang, G. & Horrigan, F.T. Cysteine modification alters voltage- and Ca2+-dependent gating of large conductance (BK) potassium channels. J. Gen. Physiol. 125, 213–236 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Hu for calculations of Mg2+ sensitivity according to the model of the intersubunit Mg2+ binding site. We thank C. Lingle, L. Salkoff and L. Hu for critical discussion. The mouse Slo1 clone was provided by L. Salkoff (Washington University). F. Horrigan (Baylor College of Medicine) provided the Y163K mutant mouse Slo1 cDNA. This work was supported by the US National Institutes of Health Grant R01-HL70393 and the National Science Foundation of China Grant 30528011 (J.C.). J.C. is funded by the Spencer T. Olin Endowment.

Author information

Authors and Affiliations

Authors

Contributions

H.Y., J.S. and J.C. designed the research; H.Y., J.S., G.Z., J.Y. and K.D. performed the experiments; H.Y., G.Z. and J.Y. analyzed the data; H.Y. and J.C. wrote the paper.

Corresponding author

Correspondence to Jianmin Cui.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 (PDF 265 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Shi, J., Zhang, G. et al. Activation of Slo1 BK channels by Mg2+ coordinated between the voltage sensor and RCK1 domains. Nat Struct Mol Biol 15, 1152–1159 (2008). https://doi.org/10.1038/nsmb.1507

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1507

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing