Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Voltage-dependent gating at the KcsA selectivity filter

Abstract

The prokaryotic K+ channel KcsA, although lacking a 'standard' voltage-sensing domain, shows voltage-dependent gating that leads to an increase in steady-state open probability of almost two orders of magnitude between +150 and −150 mV. Here we show that voltage-dependent gating in KcsA is associated with the movement of 0.7 equivalent electronic charges. This charge movement produces an increase in the rate of entry into a long-lived inactivated state and seems to be independent of the proton-activation mechanism. Charge neutralization at position 71 renders the channel essentially voltage-independent by preventing entry into the inactivated state. A mechanism for voltage-dependent gating at the selectivity filter is proposed that is based on the reorientation of the carboxylic moiety of Glu71 and its influence in the conformational dynamics of the selectivity filter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: KcsA gating is modulated by transmembrane voltage.
Figure 2: Voltage gating is independent of proton-dependent gating.
Figure 3: The voltage sensor in KcsA is located at the selectivity filter.
Figure 4: Neutralizing Glu71 sharply reduces its voltage dependence.

Similar content being viewed by others

References

  1. Hille, B. Ion channels of excitable membranes (Sinauer, Sunderland, Massachusetts, 2001).

    Google Scholar 

  2. Armstrong, C.M. Voltage-gated K channels. Sci. STKE 2003, re10 (2003).

    PubMed  Google Scholar 

  3. Bezanilla, F. The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80, 555–592 (2000).

    Article  CAS  Google Scholar 

  4. Yellen, G. The voltage-gated potassium channels and their relatives. Nature 419, 35–42 (2002).

    Article  CAS  Google Scholar 

  5. Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K. & Okamura, Y. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435, 1239–1243 (2005).

    Article  CAS  Google Scholar 

  6. Hodgkin, A. & Huxley, A. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952).

    Article  CAS  Google Scholar 

  7. Aggarwal, S.K. & MacKinnon, R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16, 1169–1177 (1996).

    Article  CAS  Google Scholar 

  8. Seoh, S.A., Sigg, D., Papazian, D.M. & Bezanilla, F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16, 1159–1167 (1996).

    Article  CAS  Google Scholar 

  9. Jiang, Y. et al. X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41 (2003).

    Article  CAS  Google Scholar 

  10. Cuello, L.G., Cortes, D.M. & Perozo, E. Molecular architecture of the KvAP voltage-dependent K+ channel in a lipid bilayer. Science 306, 491–495 (2004).

    Article  CAS  Google Scholar 

  11. Long, S.B., Campbell, E.B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005).

    Article  CAS  Google Scholar 

  12. Long, S.B., Campbell, E.B. & Mackinnon, R. Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309, 903–908 (2005).

    Article  CAS  Google Scholar 

  13. Bezanilla, F. The voltage-sensor structure in a voltage-gated channel. Trends Biochem. Sci. 30, 166–168 (2005).

    Article  CAS  Google Scholar 

  14. Ahern, C.A. & Horn, R. Stirring up controversy with a voltage sensor paddle. Trends Neurosci. 27, 303–307 (2004).

    Article  CAS  Google Scholar 

  15. Cohen, B.E., Grabe, M. & Jan, L.Y. Answers and questions from the KvAP structures. Neuron 39, 395–400 (2003).

    Article  CAS  Google Scholar 

  16. Pusch, M., Ludewig, U., Rehfeldt, A. & Jentsch, T.J. Gating of the voltage-dependent chloride channel CIC-0 by the permeant anion. Nature 373, 527–531 (1995).

    Article  CAS  Google Scholar 

  17. Doyle, D.A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  Google Scholar 

  18. Cuello, L.G., Romero, J.G., Cortes, D.M. & Perozo, E. pH-dependent gating in the Streptomyces lividans K+ channel. Biochemistry 37, 3229–3236 (1998).

    Article  CAS  Google Scholar 

  19. Heginbotham, L., LeMasurier, M., Kolmakova-Partensky, L. & Miller, C. Single Streptomyces lividans K+ channels: functional asymmetries and sidedness of proton activation. J. Gen. Physiol. 114, 551–560 (1999).

    Article  CAS  Google Scholar 

  20. Schoppa, N.E., McCormack, K., Tanouye, M.A. & Sigworth, F.J. The size of gating charge in wild-type and mutant Shaker potassium channels. Science 255, 1712–1715 (1992).

    Article  CAS  Google Scholar 

  21. Cordero-Morales, J.F. et al. Molecular determinants of gating at the potassium channel selectivity filter. Nat. Struct. Mol. Biol., advance online publication 12 March 2006 (doi:10.1038/nsmb1069).

  22. McLaughlin, S. The electrostatic properties of membranes. Annu. Rev. Biophys. Biophys. Chem. 18, 113–136 (1989).

    Article  CAS  Google Scholar 

  23. Cortes, D.M., Cuello, L.G. & Perozo, E. Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating. J. Gen. Physiol. 117, 165–180 (2001).

    Article  CAS  Google Scholar 

  24. Zhou, Y., Morais-Cabral, J.H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature 414, 43–48 (2001).

    Article  CAS  Google Scholar 

  25. Berneche, S. & Roux, B. Molecular dynamics of the KcsA K(+) channel in a bilayer membrane. Biophys. J. 78, 2900–2917 (2000).

    Article  CAS  Google Scholar 

  26. Berneche, S. & Roux, B. The ionization state and the conformation of Glu-71 in the KcsA K+ channel. Biophys. J. 82, 772–780 (2002).

    Article  CAS  Google Scholar 

  27. Guidoni, L., Torre, V. & Carloni, P. Potassium and sodium binding to the outer mouth of the K+ channel. Biochemistry 38, 8599–8604 (1999).

    Article  CAS  Google Scholar 

  28. Ranatunga, K.M., Shrivastava, I.H., Smith, G.R. & Sansom, M.S. Side-chain ionization states in a potassium channel. Biophys. J. 80, 1210–1219 (2001).

    Article  CAS  Google Scholar 

  29. Choi, H. & Heginbotham, L. Functional influence of the pore helix glutamate in the KcsA K+ channel. Biophys. J. 86, 2137–2144 (2004).

    Article  CAS  Google Scholar 

  30. Cortes, D.M. & Perozo, E. Structural dynamics of the Streptomyces lividans K+ channel (SKC1): oligomeric stoichiometry and stability. Biochemistry 36, 10343–10352 (1997).

    Article  CAS  Google Scholar 

  31. Perozo, E., Cortes, D.M. & Cuello, L.G. Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy. Nat. Struct. Biol. 5, 459–469 (1998).

    Article  CAS  Google Scholar 

  32. Delcour, A.H., Martinac, B., Adler, J. & Kung, C. Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys. J. 56, 631–636 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Roux for illuminating discussions and for critically reading the manuscript and S. Chakrapani, C. Ptak, D.M. Cortes and V. Vasquez for useful discussions and advice. This work was supported by grants from the US National Institutes of Health to E.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Perozo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordero-Morales, J., Cuello, L. & Perozo, E. Voltage-dependent gating at the KcsA selectivity filter. Nat Struct Mol Biol 13, 319–322 (2006). https://doi.org/10.1038/nsmb1070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1070

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing