Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural and biochemical insights into the regulation of protein phosphatase 2A by small t antigen of SV40

Abstract

The small t antigen (ST) of DNA tumor virus SV40 facilitates cellular transformation by disrupting the functions of protein phosphatase 2A (PP2A) through a poorly defined mechanism. The crystal structure of the core domain of SV40 ST bound to the scaffolding subunit of human PP2A reveals that the ST core domain has a novel zinc-binding fold and interacts with the conserved ridge of HEAT repeats 3–6, which overlaps with the binding site for the B′ (also called PR61 or B56) regulatory subunit. ST has a lower binding affinity than B′ for the PP2A core enzyme. Consequently, ST does not efficiently displace B′ from PP2A holoenzymes in vitro. Notably, ST inhibits PP2A phosphatase activity through its N-terminal J domain. These findings suggest that ST may function mainly by inhibiting the phosphatase activity of the PP2A core enzyme, and to a lesser extent by modulating assembly of the PP2A holoenzymes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the scaffolding subunit of PP2A bound to SV40 ST.
Figure 2: Structural features of the core domain of ST.
Figure 3: Recognition of the A subunit of PP2A by ST.
Figure 4: The J domain of ST directly contributes to binding of the PP2A core enzyme.
Figure 5: ST inhibits the phosphatase activity of the PP2A core enzyme.
Figure 6: Binding of ST and of B′ to the PP2A core enzyme are mutually exclusive.
Figure 7: A proposed mechanistic model of ST-mediated inhibition of PP2A.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Janssens, V. & Goris, J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem. J. 353, 417–439 (2001).

    Article  CAS  Google Scholar 

  2. Virshup, D.M. Protein phosphatase 2A: a panoply of enzymes. Curr. Opin. Cell Biol. 12, 180–185 (2000).

    Article  CAS  Google Scholar 

  3. Lechward, K., Awotunde, O.S., Swiatek, W. & Muszynska, G. Protein phosphatase 2A: variety of forms and diversity of functions. Acta Biochim. Pol. 48, 921–933 (2001).

    CAS  PubMed  Google Scholar 

  4. Kremmer, E., Ohst, K., Kiefer, J., Brewis, N. & Walter, G. Separation of PP2A core enzyme and holoenzyme with monoclonal antibodies against the regulatory A subunit: abundant expression of both forms in cells. Mol. Cell. Biol. 17, 1692–1701 (1997).

    Article  CAS  Google Scholar 

  5. Hemmings, B.A. et al. alpha- and beta-forms of the 65-kDa subunit of protein phosphatase 2A have a similar 39 amino acid repeating structure. Biochemistry 29, 3166–3173 (1990).

    Article  CAS  Google Scholar 

  6. Stone, S.R., Hofsteenge, J. & Hemmings, B.A. Molecular cloning of cDNAs encoding two isoforms of the catalytic subunit of protein phosphatase 2A. Biochemistry 26, 7215–7220 (1987).

    Article  CAS  Google Scholar 

  7. Green, D.D., Yang, S.I. & Mumby, M.C. Molecular cloning and sequence analysis of the catalytic subunit of bovine type 2A protein phosphatase. Proc. Natl. Acad. Sci. USA 84, 4880–4884 (1987).

    Article  CAS  Google Scholar 

  8. Arino, J., Woon, C.W., Brautigan, D.L., Miller, T.B., Jr . & Johnson, G.L. Human liver phosphatase 2A: cDNA and amino acid sequence of two catalytic subunit isotypes. Proc. Natl. Acad. Sci. USA 85, 4252–4256 (1988).

    Article  CAS  Google Scholar 

  9. Moreno, C.S. et al. WD40 repeat proteins striatin and S/G(2) nuclear autoantigen are members of a novel family of calmodulin-binding proteins that associate with protein phosphatase 2A. J. Biol. Chem. 275, 5257–5263 (2000).

    Article  CAS  Google Scholar 

  10. Walter, G. & Mumby, M. Protein serine/threonine phosphatases and cell transformation. Biochim. Biophys. Acta 1155, 207–226 (1993).

    CAS  PubMed  Google Scholar 

  11. Janssens, V., Goris, J. & Van Hoof, C. PP2A: the expected tumor suppressor. Curr. Opin. Genet. Dev. 15, 34–41 (2005).

    Article  CAS  Google Scholar 

  12. Pallas, D.C. et al. Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell 60, 167–176 (1990).

    Article  CAS  Google Scholar 

  13. Walter, G., Ruediger, R., Slaughter, C. & Mumby, M. Association of protein phosphatase 2A with polyoma virus medium tumor antigen. Proc. Natl. Acad. Sci. USA 87, 2521–2525 (1990).

    Article  CAS  Google Scholar 

  14. Sontag, E. et al. The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation. Cell 75, 887–897 (1993).

    Article  CAS  Google Scholar 

  15. Hahn, W.C. et al. Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol. Cell. Biol. 22, 2111–2123 (2002).

    Article  CAS  Google Scholar 

  16. Ruediger, R. et al. Identification of binding sites on the regulatory A subunit of protein phosphatase 2A for the catalytic C subunit and for tumor antigens of simian virus 40 and polyomavirus. Mol. Cell. Biol. 12, 4872–4882 (1992).

    Article  CAS  Google Scholar 

  17. Ruediger, R., Hentz, M., Fait, J., Mumby, M. & Walter, G. Molecular model of the A subunit of protein phosphatase 2A: interaction with other subunits and tumor antigens. J. Virol. 68, 123–129 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ruediger, R., Fields, K. & Walter, G. Binding specificity of protein phosphatase 2A core enzyme for regulatory B subunits and T antigens. J. Virol. 73, 839–842 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mateer, S.C., Fedorov, S.A. & Mumby, M.C. Identification of structural elements involved in the interaction of simian virus 40 small tumor antigen with protein phosphatase 2A. J. Biol. Chem. 273, 35339–35346 (1998).

    Article  CAS  Google Scholar 

  20. Scheidtmann, K.H., Mumby, M.C., Rundell, K. & Walter, G. Dephosphorylation of simian virus 40 large-T antigen and p53 protein by protein phosphatase 2A: inhibition by small-t antigen. Mol. Cell. Biol. 11, 1996–2003 (1991).

    Article  CAS  Google Scholar 

  21. Yang, S.I. et al. Control of protein phosphatase 2A by simian virus 40 small-t antigen. Mol. Cell. Biol. 11, 1988–1995 (1991).

    Article  CAS  Google Scholar 

  22. Kamibayashi, C. et al. Comparison of heterotrimeric protein phosphatase 2A containing different B subunits. J. Biol. Chem. 269, 20139–20148 (1994).

    CAS  PubMed  Google Scholar 

  23. Cayla, X., Ballmer-Hofer, K., Merlevede, W. & Goris, J. Phosphatase 2A associated with polyomavirus small-T or middle-T antigen is an okadaic acid-sensitive tyrosyl phosphatase. Eur. J. Biochem. 214, 281–286 (1993).

    Article  CAS  Google Scholar 

  24. Van Hoof, C. & Goris, J. PP2A fulfills its promises as tumor suppressor: which subunits are important? Cancer Cell 5, 105–106 (2004).

    Article  CAS  Google Scholar 

  25. Pallas, D.C. et al. The third subunit of protein phosphatase 2A (PP2A), a 55-kilodalton protein which is apparently substituted for by T antigens in complexes with the 36- and 63-kilodalton PP2A subunits, bears little resemblance to T antigens. J. Virol. 66, 886–893 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, W. et al. Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell 5, 127–136 (2004).

    Article  CAS  Google Scholar 

  27. Xing, Y. et al. Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins. Cell 127, 341–352 (2006).

    Article  CAS  Google Scholar 

  28. Xu, Y. et al. Structure of the protein phosphatase 2A holoenzyme. Cell 127, 1239–1251 (2006).

    Article  CAS  Google Scholar 

  29. Cho, U.S. & Xu, W. Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature 445, 53–57 (2006).

    Article  Google Scholar 

  30. Groves, M.R., Hanlon, N., Turowski, P., Hemmings, B.A. & Barford, D. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell 96, 99–110 (1999).

    Article  CAS  Google Scholar 

  31. Turk, B., Porras, A., Mumby, M.C. & Rundell, K. Simian virus 40 small-t antigen binds two zinc ions. J. Virol. 67, 3671–3673 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  33. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  34. Mungre, S. et al. Mutations which affect the inhibition of protein phosphatase 2A by simian virus 40 small-t antigen in vitro decrease viral transformation. J. Virol. 68, 1675–1681 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Campbell, K.S., Auger, K.R., Hemmings, B.A., Roberts, T.M. & Pallas, D.C. Identification of regions in polyomavirus middle T and small t antigens important for association with protein phosphatase 2A. J. Virol. 69, 3721–3728 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim, H.Y., Ahn, B.Y. & Cho, Y. Structural basis for the inactivation of retinoblastoma tumor suppressor by SV40 large T antigen. EMBO J. 20, 295–304 (2001).

    Article  CAS  Google Scholar 

  37. Cayla, X. et al. Isolation and characterization of a tyrosyl phosphatase activator from rabbit skeletal muscle and Xenopus laevis oocytes. Biochemistry 29, 658–667 (1990).

    Article  CAS  Google Scholar 

  38. Van Hoof, C., Cayla, X., Bosch, M., Merlevede, W. & Goris, J. The phosphotyrosyl phosphatase activator of protein phosphatase 2A. A novel purification method, immunological and enzymic characterization. Eur. J. Biochem. 226, 899–907 (1994).

    Article  CAS  Google Scholar 

  39. Srinivasan, A. et al. The amino-terminal transforming region of simian virus 40 large T and small t antigens functions as a J domain. Mol. Cell. Biol. 17, 4761–4773 (1997).

    Article  CAS  Google Scholar 

  40. Kamibayashi, C., Lickteig, R.L., Estes, R., Walter, G. & Mumby, M.C. Expression of the A subunit of protein phosphatase 2A and characterization of its interactions with the catalytic and regulatory subunits. J. Biol. Chem. 267, 21864–21872 (1992).

    CAS  PubMed  Google Scholar 

  41. Chao, Y. et al. Structure and mechanism of the phosphotyrosyl phosphatase activator. Mol. Cell 23, 535–546 (2006).

    Article  CAS  Google Scholar 

  42. Johnson, S.A. & Hunter, T. Kinomics: methods for deciphering the kinome. Nat. Methods 2, 17–25 (2005).

    Article  CAS  Google Scholar 

  43. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  44. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D. Biol. Crystallogr. 61, 458–464 (2005).

    Article  Google Scholar 

  45. Brunger, A.T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  46. Kraulis, P.J. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Roberts at Harvard Medical School for the complementary DNA encoding SV40 ST, and A. Saxena at the beamlines of the National Synchrotron Light Source, Brookhaven National Laboratory for help. This work was supported by grant R01-CA123155 from the US National Institutes of Health (Y.S.).

Author information

Authors and Affiliations

Authors

Contributions

Y.C. and Y. Xu designed, performed and analyzed most of the experiments. Q.B. contributed to PP2A enzymology. Y. Xing, Z. Li and Z. Lin provided technical assistance. J.B.S. contributed to discussions. P.D.J. refined the structure. Y.S. led the team and wrote the paper.

Corresponding author

Correspondence to Yigong Shi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Xu, Y., Bao, Q. et al. Structural and biochemical insights into the regulation of protein phosphatase 2A by small t antigen of SV40. Nat Struct Mol Biol 14, 527–534 (2007). https://doi.org/10.1038/nsmb1254

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1254

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing