Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Energetics and dynamics of SNAREpin folding across lipid bilayers

Abstract

Membrane fusion occurs when SNAREpins fold up between lipid bilayers. How much energy is generated during SNAREpin folding and how this energy is coupled to the fusion of apposing membranes is unknown. We have used a surface forces apparatus to determine the energetics and dynamics of SNAREpin formation and characterize the different intermediate structures sampled by cognate SNAREs in the course of their assembly. The interaction energy–versus–distance profiles of assembling SNAREpins reveal that SNARE motifs begin to interact when the membranes are 8 nm apart. Even after very close approach of the bilayers (2–4 nm), the SNAREpins remain partly unstructured in their membrane-proximal region. The energy stabilizing a single SNAREpin in this configuration (35 kBT) corresponds closely with the energy needed to fuse outer but not inner leaflets (hemifusion) of pure lipid bilayers (40–50 kBT).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction energy–versus–distance profile of cognate SNAREs in apposing bilayers (squares, approach; circles, separation).
Figure 2: Specificity and kinetics of SNARE assembly.
Figure 3: Energy of SNAREpin folding.
Figure 4: Extent of SNAREpin folding.
Figure 5: SNARE assembly and adhesion energy are modulated by SNARE-membrane interactions.

Similar content being viewed by others

References

  1. Sollner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H. & Rothman, J.E. A protein assembly-disassembly pathway in-vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418 (1993).

    Article  CAS  Google Scholar 

  2. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  Google Scholar 

  3. Chernomordik, L.V. & Kozlov, M.M. Protein-lipid interplay in fusion and fission of biological membranes. Annu. Rev. Biochem. 72, 175–207 (2003).

    Article  CAS  Google Scholar 

  4. Tamm, L.K., Crane, J. & Kiessling, V. Membrane fusion: a structural perspective on the interplay of lipids and proteins. Curr. Opin. Struct. Biol. 13, 453–466 (2003).

    Article  CAS  Google Scholar 

  5. Cohen, F.S. & Melikyan, G.B. The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J. Membr. Biol. 199, 1–14 (2004).

    Article  CAS  Google Scholar 

  6. Sollner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324 (1993).

    Article  CAS  Google Scholar 

  7. Brunger, A.T. Structure and function of SNARE and SNARE-interacting proteins. Q. Rev. Biophys. 38, 1–47 (2005).

    Article  CAS  Google Scholar 

  8. Jackson, M.B. & Chapman, E.R. Fusion pores and fusion machines in Ca2+-triggered exocytosis. Annu. Rev. Biophys. Biomol. Struct. 35, 135–160 (2006).

    Article  CAS  Google Scholar 

  9. Hu, C. et al. Fusion of cells by flipped SNAREs. Science 300, 1745–1749 (2003).

    Article  CAS  Google Scholar 

  10. Fasshauer, D., Otto, H., Eliason, W.K., Jahn, R. & Brunger, A.T. Structural changes are associated with soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor complex formation. J. Biol. Chem. 272, 28036–28041 (1997).

    Article  CAS  Google Scholar 

  11. Dulubova, I. et al. A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J. 18, 4372–4382 (1999).

    Article  CAS  Google Scholar 

  12. Hazzard, J., Sudhof, T.C. & Rizo, J. NMR analysis of the structure of synaptobrevin and of its interaction with syntaxin. J. Biomol. NMR 14, 203–207 (1999).

    Article  CAS  Google Scholar 

  13. Poirier, M.A. et al. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat. Struct. Biol. 5, 765–769 (1998).

    Article  CAS  Google Scholar 

  14. Sutton, R.B., Fasshauer, D., Jahn, R. & Brunger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347–353 (1998).

    Article  CAS  Google Scholar 

  15. Hanson, P.I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J.E. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523–535 (1997).

    Article  CAS  Google Scholar 

  16. Hua, S.Y. & Charlton, M.P. Activity-dependent changes in partial VAMP complexes during neurotransmitter release. Nat. Neurosci. 2, 1078–1083 (1999).

    Article  CAS  Google Scholar 

  17. Xu, T. et al. Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis. Cell 99, 713–722 (1999).

    Article  CAS  Google Scholar 

  18. Chen, Y.A., Scales, S.J. & Scheller, R.H. Sequential SNARE assembly underlies priming and triggering of exocytosis. Neuron 30, 161–170 (2001).

    Article  CAS  Google Scholar 

  19. Melia, T.J. et al. Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins. J. Cell Biol. 158, 929–940 (2002).

    Article  CAS  Google Scholar 

  20. Sorensen, J.B. et al. Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles. EMBO J. 25, 955–966 (2006).

    Article  CAS  Google Scholar 

  21. Pobbati, A.V., Stein, A. & Fasshauer, D. N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 313, 673–676 (2006).

    Article  CAS  Google Scholar 

  22. Fasshauer, D., Antonin, W., Subramaniam, V. & Jahn, R. SNARE assembly and disassembly exhibit a pronounced hysteresis. Nat. Struct. Biol. 9, 144–151 (2002).

    Article  CAS  Google Scholar 

  23. Liu, W. et al. Single molecule mechanical probing of the SNARE protein interactions. Biophys. J. 91, 744–758 (2006).

    Article  CAS  Google Scholar 

  24. Yersin, A. et al. Interactions between synaptic vesicle fusion proteins explored by atomic force microscopy. Proc. Natl. Acad. Sci. USA 100, 8736–8741 (2003).

    Article  CAS  Google Scholar 

  25. Israelachvili, J.N. Intermolecular and Surface Forces (Academic Press, London, 1992).

    Google Scholar 

  26. Israelachvili, J.N. & Adams, G.E. Measurement of forces between 2 mica surfaces in aqueous-electrolyte solutions in range 0–100 nm. J. Chem. Soc. Farad. Trans. I 74, 975–1001 (1978).

    Article  CAS  Google Scholar 

  27. Grote, E., Baba, M., Ohsumi, Y. & Novick, P.J. Geranylgeranylated SNAREs are dominant inhibitors of membrane fusion. J. Cell Biol. 151, 453–465 (2000).

    Article  CAS  Google Scholar 

  28. McNew, J.A. et al. Close is not enough: SNARE-dependent membrane fusion requires an active mechanism that transduces force to membrane anchors. J. Cell Biol. 150, 105–117 (2000).

    Article  CAS  Google Scholar 

  29. Bowen, M.E., Weninger, K., Brunger, A.T. & Chu, S. Single molecule observation of liposome-bilayer fusion thermally induced by soluble N-ethyl maleimide sensitive-factor attachment protein receptors (SNAREs). Biophys. J. 87, 3569–3584 (2004).

    Article  CAS  Google Scholar 

  30. Rettig, J. & Neher, E. Emerging roles of presynaptic proteins in Ca++-triggered exocytosis. Science 298, 781–785 (2002).

    Article  CAS  Google Scholar 

  31. Ashery, U. et al. Munc13–1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells. EMBO J. 19, 3586–3596 (2000).

    Article  CAS  Google Scholar 

  32. Rizzoli, S.O. & Betz, W.J. Synaptic vesicle pools. Nat. Rev. Neurosci. 6, 57–69 (2005).

    Article  CAS  Google Scholar 

  33. Shen, J., Tareste, D.C., Paumet, F., Rothman, J.E. & Melia, T.J. Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128, 183–195 (2007).

    Article  CAS  Google Scholar 

  34. Derjaguin, B.V., Muller, V.M. & Toporov, Y.P. Effect of Contact Deformations on Adhesion of Particles. J. Colloid Interface Sci. 53, 314–326 (1975).

    Article  CAS  Google Scholar 

  35. Maugis, D. Adhesion of spheres—the Jkr-Dmt transition using a dugdale model. J. Colloid Interface Sci. 150, 243–269 (1992).

    Article  CAS  Google Scholar 

  36. Dolan, A.K. & Edwards, S.F. Theory of stabilization of colloids by adsorbed polymer. Proc. R. Soc. Lond. B Math. Phys. Eng. Sci. 337, 509–516 (1974).

    Article  CAS  Google Scholar 

  37. Alexander, S. Adsorption of chain molecules with a polar head a-scaling description. J. Physique 38, 983–987 (1977).

    Article  CAS  Google Scholar 

  38. Degennes, P.G. Polymers at an interface—a simplified view. Adv. Colloid Interface Sci. 27, 189–209 (1987).

    Article  CAS  Google Scholar 

  39. Kuhl, T.L., Leckband, D.E., Lasic, D.D. & Israelachvili, J.N. Modulation of interaction forces between bilayers exposing short-chained ethylene-oxide headgroups. Biophys. J. 66, 1479–1488 (1994).

    Article  CAS  Google Scholar 

  40. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    Article  CAS  Google Scholar 

  41. Millett, I.S., Doniach, S. & Plaxco, K.W. Toward a taxonomy of the denatured state: small angle scattering studies of unfolded proteins. Adv. Protein Chem. 62, 241–262 (2002).

    Article  CAS  Google Scholar 

  42. Kohn, J.E. et al. Random-coil behavior and the dimensions of chemically unfolded proteins. Proc. Natl. Acad. Sci. USA 101, 12491–12496 (2004).

    Article  CAS  Google Scholar 

  43. Fernandez, I. et al. Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell 94, 841–849 (1998).

    Article  CAS  Google Scholar 

  44. Margittai, M., Fasshauer, D., Pabst, S., Jahn, R. & Langen, R. Homo- and heterooligomeric SNARE complexes studied by site-directed spin labeling. J. Biol. Chem. 276, 13169–13177 (2001).

    Article  CAS  Google Scholar 

  45. Xiao, W., Poirier, M.A., Bennett, M.K. & Shin, Y.K. The neuronal t-SNARE complex is a parallel four-helix bundle. Nat. Struct. Biol. 8, 308–311 (2001).

    Article  CAS  Google Scholar 

  46. Margittai, M., Fasshauer, D., Jahn, R. & Langen, R. The Habc domain and the SNARE core complex are connected by a highly flexible linker. Biochemistry 42, 4009–4014 (2003).

    Article  CAS  Google Scholar 

  47. Fitzkee, N.C. & Rose, G.D. Reassessing random-coil statistics in unfolded proteins. Proc. Natl. Acad. Sci. USA 101, 12497–12502 (2004).

    Article  CAS  Google Scholar 

  48. Hanggi, P., Talkner, P. & Borkovec, M. Reaction-rate theory—50 years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990).

    Article  Google Scholar 

  49. Evans, E. Probing the relation between force–lifetime–and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001).

    Article  CAS  Google Scholar 

  50. Hu, K. et al. Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion. Nature 415, 646–650 (2002).

    Article  CAS  Google Scholar 

  51. Kim, C.S., Kweon, D.H. & Shin, Y.K. Membrane topologies of neuronal SNARE folding intermediates. Biochemistry 41, 10928–10933 (2002).

    Article  CAS  Google Scholar 

  52. Knecht, V. & Grubmuller, H. Mechanical coupling via the membrane fusion SNARE protein syntaxin 1A: a molecular dynamics study. Biophys. J. 84, 1527–1547 (2003).

    Article  CAS  Google Scholar 

  53. Marrink, S.J., Berger, O., Tieleman, P. & Jahnig, F. Adhesion forces of lipids in a phospholipid membrane studied by molecular dynamics simulations. Biophys. J. 74, 931–943 (1998).

    Article  CAS  Google Scholar 

  54. Rizo, J., Chen, X. & Arac, D. Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. Trends Cell Biol. 16, 339–350 (2006).

    Article  CAS  Google Scholar 

  55. Pincet, F., Perez, E., Bryant, G., Lebeau, L. & Mioskowski, C. Long-range attraction between nucleosides with short-range specificity: Direct measurements. Phys. Rev. Lett. 73, 2780–2783 (1994).

    Article  CAS  Google Scholar 

  56. Tareste, D. et al. Energy of hydrogen bonds probed by the adhesion of functionalized lipid layers. Biophys. J. 83, 3675–3681 (2002).

    Article  CAS  Google Scholar 

  57. Helm, C.A., Knoll, W. & Israelachvili, J.N. Measurement of ligand-receptor interactions. Proc. Natl. Acad. Sci. USA 88, 8169–8173 (1991).

    Article  CAS  Google Scholar 

  58. Sivasankar, S., Brieher, W., Lavrik, N., Gumbiner, B. & Leckband, D. Direct molecular force measurements of multiple adhesive interactions between cadherin ectodomains. Proc. Natl. Acad. Sci. USA 96, 11820–11824 (1999).

    Article  CAS  Google Scholar 

  59. Giraudo, C.G., Eng, W.S., Melia, T.J. & Rothman, J.E. A clamping mechanism involved in SNARE-dependent exocytosis. Science 313, 676–680 (2006).

    Article  CAS  Google Scholar 

  60. Kozlovsky, Y. & Kozlov, M.M. Stalk model of membrane fusion: solution of energy crisis. Biophys. J. 82, 882–895 (2002).

    Article  CAS  Google Scholar 

  61. Marra, J. Controlled deposition of lipid monolayers and bilayers onto mica and direct force measurements between galactolipid bilayers in aqueous-solutions. J. Colloid Interface Sci. 107, 446–458 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Human Frontier Science Program, a travel grant from US National Science Foundation, and US National Institutes of Health grants to J.E.R. We thank J. McNew (Rice University) for the generous gift of the plasmids used in this study, and A. Martin-Molina, A. Yamamoto and D. You for experimental help and many fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Tareste.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1, Supplementary Data, Supplementary Methods (PDF 612 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, F., Pincet, F., Perez, E. et al. Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat Struct Mol Biol 14, 890–896 (2007). https://doi.org/10.1038/nsmb1310

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1310

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing