Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Some like it hot: the structure and function of small heat-shock proteins

Abstract

Small heat-shock proteins (sHsps) are a widespread and diverse class of molecular chaperones. Recent evidence suggests that they maintain protein homeostasis by binding proteins in non-native conformations, thereby preventing substrate aggregation. Some members of the sHsp family are inactive or only partially active under physiological conditions, and transition toward the active state is induced by specific triggers, such as elevated temperature. Release of substrate proteins bound to sHsps requires cooperation with ATP-dependent chaperones, suggesting that sHsps create a reservoir of non-native proteins for subsequent refolding.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of the number of representatives of the sHsp family in different organisms.
Figure 2: Features of sHsp structures.
Figure 3: Model for the chaperone function of sHsps.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kappe, G., Leunissen, J.A. & De Jong, W.W. Evolution and diversity of prokaryotic small heat shock proteins. Prog. Mol. Subcell. Biol. 28, 1–17 (2002).

    Article  CAS  Google Scholar 

  2. Waters, E.R., Lee, G.J. & Vierling, E. Evolution, structure and function of the small heat shock proteins in plants. J. Exp. Bot. 47, 325–338 (1996).

    Article  CAS  Google Scholar 

  3. Narberhaus, F. Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol. Mol. Biol. Rev. 66, 64–93 (2002).

    Article  CAS  Google Scholar 

  4. Laksanalamai, P. & Robb, F.T. Small heat shock proteins from extremophiles: a review. Extremophiles 8, 1–11 (2004).

    Article  CAS  Google Scholar 

  5. Allen, S.P., Polazzi, J.O., Gierse, J.K. & Easton, A.M. Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli. J. Bacteriol. 174, 6938–6947 (1992).

    Article  CAS  Google Scholar 

  6. Horwitz, J. Alpha-crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. USA 89, 10449–10453 (1992).

    Article  CAS  Google Scholar 

  7. Horwitz, J. Alpha-crystallin. Exp. Eye Res. 76, 145–153 (2003).

    Article  CAS  Google Scholar 

  8. Brady, J.P. et al. Targeted disruption of the mouse alpha A-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein alpha B-crystallin. Proc. Natl. Acad. Sci. USA 94, 884–889 (1997).

    Article  CAS  Google Scholar 

  9. Stege, G.J. et al. The molecular chaperone alphaB-crystallin enhances amyloid beta neurotoxicity. Biochem. Biophys. Res. Commun. 262, 152–156 (1999).

    Article  CAS  Google Scholar 

  10. Hsu, A.L., Murphy, C.T. & Kenyon, C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300, 1142–1145 (2003).

    Article  CAS  Google Scholar 

  11. Clark, J.I. & Muchowski, P.J. Small heat-shock proteins and their potential role in human disease. Curr. Opin. Struct. Biol. 10, 52–59 (2000).

    Article  CAS  Google Scholar 

  12. Latchman, D.S. Protection of neuronal and cardiac cells by HSP27. Prog. Mol. Subcell. Biol. 28, 253–265 (2002).

    Article  CAS  Google Scholar 

  13. Kim, K.K., Kim, R. & Kim, S.H. Crystal structure of a small heat-shock protein. Nature 394, 595–599 (1998).

    Article  CAS  Google Scholar 

  14. Kennaway, C.K. et al. Dodecameric structure of the small heat shock protein ACR1 from mycobacterium tuberculosis. J. Biol. Chem., published online 26 July 2005 (10.1074/jbc.M504263200).

  15. Haslbeck, M. et al. Hsp26: a temperature-regulated chaperone. EMBO J. 18, 6744–6751 (1999).

    Article  CAS  Google Scholar 

  16. van Montfort, R.L., Basha, E., Friedrich, K.L., Slingsby, C. & Vierling, E. Crystal structure and assembly of a eukaryotic small heat shock protein. Nat. Struct. Biol. 8, 1025–1030 (2001).

    Article  CAS  Google Scholar 

  17. Haley, D.A., Horwitz, J. & Stewart, P.L. The small heat-shock protein, alphaB-crystallin, has a variable quaternary structure. J. Mol. Biol. 277, 27–35 (1998).

    Article  CAS  Google Scholar 

  18. Haslbeck, M. & Buchner, J. Chaperone function of sHsps. Prog. Mol. Subcell. Biol. 28, 37–59 (2002).

    Article  CAS  Google Scholar 

  19. Van Montfort, R., Slingsby, C. & Vierling, E. Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. Adv. Protein Chem. 59, 105–156 (2001).

    Article  CAS  Google Scholar 

  20. Candido, E.P. The small heat shock proteins of the nematode Caenorhabditis elegans: structure, regulation and biology. Prog. Mol. Subcell. Biol. 28, 61–78 (2002).

    Article  CAS  Google Scholar 

  21. Haslbeck, M. et al. Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. EMBO J. 23, 638–649 (2004).

    Article  CAS  Google Scholar 

  22. Narberhaus, F. & Haslbeck, M. Small heat shock proteins: dynamic players in the folding game. in Protein Folding Handbook (eds. Buchner, J. & Kiefhaber, T.) 830–857 (Wiley-VCH, Weinheim, Germany, 2005).

    Chapter  Google Scholar 

  23. Pasta, S.Y., Raman, B., Ramakrishna, T. & Rao, C. The IXI/V motif in the C-terminal extension of alpha-crystallins: alternative interactions and oligomeric assemblies. Mol. Vis. 10, 655–662 (2004).

    CAS  PubMed  Google Scholar 

  24. Petko, L. & Lindquist, S. Hsp26 is not required for growth at high temperatures, nor for thermotolerance, spore development, or germination. Cell 45, 885–894 (1986).

    Article  CAS  Google Scholar 

  25. Ingolia, T.D. & Craig, E.A. Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin. Proc. Natl. Acad. Sci. USA 79, 2360–2364 (1982).

    Article  CAS  Google Scholar 

  26. Jakob, U., Gaestel, M., Engel, K. & Buchner, J. Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268, 1517–1520 (1993).

    CAS  PubMed  Google Scholar 

  27. Studer, S. & Narberhaus, F. Chaperone activity and homo- and hetero-oligomer formation of bacterial small heat shock proteins. J. Biol. Chem. 275, 37212–37218 (2000).

    Article  CAS  Google Scholar 

  28. Roy, S.K., Hiyama, T. & Nakamoto, H. Purification and characterization of the 16-kDa heat-shock-responsive protein from the thermophilic cyanobacterium Synechococcus vulcanus, which is an alpha-crystallin-related, small heat shock protein. Eur. J. Biochem. 262, 406–416 (1999).

    Article  CAS  Google Scholar 

  29. Lee, G.J., Roseman, A.M., Saibil, H.R. & Vierling, E. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J. 16, 659–671 (1997).

    Article  CAS  Google Scholar 

  30. Basha, E. et al. The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. J. Biol. Chem. 279, 7566–7575 (2004).

    Article  CAS  Google Scholar 

  31. Stromer, T., Ehrnsperger, M., Gaestel, M. & Buchner, J. Analysis of the interaction of small heat shock proteins with unfolding proteins. J. Biol. Chem. 278, 18015–18021 (2003).

    Article  CAS  Google Scholar 

  32. Basha, E., Lee, G.J., Demeler, B. & Vierling, E. Chaperone activity of cytosolic small heat shock proteins from wheat. Eur. J. Biochem. 271, 1426–1436 (2004).

    Article  CAS  Google Scholar 

  33. Nover, L., Scharf, K.D. & Neumann, D. Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Mol. Cell. Biol. 3, 1648–1655 (1983).

    Article  CAS  Google Scholar 

  34. Stromer, T., Fischer, E., Richter, K., Haslbeck, M. & Buchner, J. Analysis of the regulation of the molecular chaperone Hsp26 by temperature-induced dissociation - The N-terminal domain is important for oligomer assembly and the binding of unfolding proteins. J. Biol. Chem. 279, 11222–11228 (2004).

    Article  CAS  Google Scholar 

  35. Haslbeck, M. et al. A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization. J. Mol. Biol. 343, 445–455 (2004).

    Article  CAS  Google Scholar 

  36. Friedrich, K.L., Giese, K.C., Buan, N.R. & Vierling, E. Interactions between small heat shock protein subunits and substrate in small heat shock protein-substrate complexes. J. Biol. Chem. 279, 1080–1089 (2004).

    Article  CAS  Google Scholar 

  37. Giese, K.C. & Vierling, E. Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro. J. Biol. Chem. 277, 46310–46318 (2002).

    Article  CAS  Google Scholar 

  38. Lindner, R.A. et al. Mouse Hsp25, a small shock protein. The role of its C-terminal extension in oligomerization and chaperone action. Eur. J. Biochem. 267, 1923–1932 (2000).

    Article  CAS  Google Scholar 

  39. Kokke, B.P., Leroux, M.R., Candido, E.P., Boelens, W.C. & De Jong, W.W. Caenorhabditis elegans small heat-shock proteins Hsp12.2 and Hsp12.3 form tetramers and have no chaperone-like activity. FEBS Lett. 433, 228–232 (1998).

    Article  CAS  Google Scholar 

  40. van de Klundert, F.A. et al. The mammalian small heat-shock protein Hsp20 forms dimers and is a poor chaperone. Eur. J. Biochem. 258, 1014–1021 (1998).

    Article  CAS  Google Scholar 

  41. Ehrnsperger, M., Graber, S., Gaestel, M. & Buchner, J. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J. 16, 221–229 (1997).

    Article  CAS  Google Scholar 

  42. Stege, G.J., Li, G.C., Li, L., Kampinga, H.H. & Konings, A.W. On the role of hsp72 in heat-induced intranuclear protein aggregation. Int. J. Hyperthermia 10, 659–674 (1994).

    Article  CAS  Google Scholar 

  43. Lee, G.J. & Vierling, E. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol. 122, 189–198 (2000).

    Article  CAS  Google Scholar 

  44. Wang, K. & Spector, A. alpha-crystallin prevents irreversible protein denaturation and acts cooperatively with other heat-shock proteins to renature the stabilized partially denatured protein in an ATP-dependent manner. Eur. J. Biochem. 267, 4705–4712 (2000).

    Article  CAS  Google Scholar 

  45. Veinger, L., Diamant, S., Buchner, J. & Goloubinoff, P. The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J. Biol. Chem. 273, 11032–11037 (1998).

    Article  CAS  Google Scholar 

  46. Matuszewska, M., Kuczynska-Wisnik, D., Laskowska, E. & Liberek, K. The small heat shock protein IbpA of Escherichia coli cooperates with IbpB in stabilization of thermally aggregated proteins in a disaggregation competent state. J. Biol. Chem. 280, 12292–12298 (2005).

    Article  CAS  Google Scholar 

  47. Mogk, A., Deuerling, E., Vorderwulbecke, S., Vierling, E. & Bukau, B. Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol. Microbiol. 50, 585–595 (2003).

    Article  CAS  Google Scholar 

  48. Haslbeck, M., Miess, A., Stromer, T., Walter, S. & Buchner, J. Disassembling protein aggregates in the yeast cytosol: The cooperation of Hsp26 with Ssa1 and Hsp104. J. Biol. Chem. 280, 23861–23868 (2005).

    Article  CAS  Google Scholar 

  49. Cashikar, A.G., Duennwald, M.L. & Lindquist, S.L. A chaperone pathway in protein disaggregation: Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J. Biol. Chem. 280, 23869–23875 (2005).

    Article  CAS  Google Scholar 

  50. Buchner, J. & Walter, S. Analysis of chaperone function in vitro. in Protein Folding Handbook (eds. Buchner, J. & Kiefhaber, T.) 162–196 (Wiley-VCH, Weinheim, Germany, 2005).

    Chapter  Google Scholar 

  51. Muchowski, P.J. & Clark, J.I. ATP-enhanced molecular chaperone functions of the small heat shock protein human alphaB crystallin. Proc. Natl. Acad. Sci. USA 95, 1004–1009 (1998).

    Article  CAS  Google Scholar 

  52. Biswas, A. & Das, K.P. Role of ATP on the interaction of alpha-crystallin with its substrates and its implications for the molecular chaperone function. J. Biol. Chem. 279, 42648–42657 (2004).

    Article  CAS  Google Scholar 

  53. Sobott, F., Benesch, J.L., Vierling, E. & Robinson, C.V. Subunit exchange of multimeric protein complexes. Real-time monitoring of subunit exchange between small heat shock proteins by using electrospray mass spectrometry. J. Biol. Chem. 277, 38921–38929 (2002).

    Article  CAS  Google Scholar 

  54. Lentze, N., Aquilina, J.A., Lindbauer, M., Robinson, C.V. & Narberhaus, F. Temperature and concentration-controlled dynamics of rhizobial small heat shock proteins. Eur. J. Biochem. 271, 2494–2503 (2004).

    Article  CAS  Google Scholar 

  55. Bova, M.P., Mchaourab, H.S., Han, Y. & Fung, B.K.K. Subunit exchange of small heat shock proteins - Analysis of oligomer formation of alpha A-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations. J. Biol. Chem. 275, 1035–1042 (2000).

    Article  CAS  Google Scholar 

  56. Shashidharamurthy, R., Koteiche, H.A., Dong, J. & Mchaourab, H.S. Mechanism of chaperone function in small heat shock proteins: dissociation of the HSP27 oligomer is required for recognition and binding of destabilized T4 lysozyme. J. Biol. Chem. 280, 5281–5289 (2005).

    Article  CAS  Google Scholar 

  57. Yang, H. et al. The Mycobacterium tuberculosis small heat shock protein Hsp16.3 exposes hydrophobic surfaces at mild conditions: conformational flexibility and molecular chaperone activity. Protein Sci. 8, 174–179 (1999).

    Article  CAS  Google Scholar 

  58. Lindner, R.A., Kapur, A., Mariani, M., Titmuss, S.J. & Carver, J.A. Structural alterations of alpha-crystallin during its chaperone action. Eur. J. Biochem. 258, 170–183 (1998).

    Article  CAS  Google Scholar 

  59. Mchaourab, H.S., Dodson, E.K. & Koteiche, H.A. Mechanism of chaperone function in small heat shock proteins. Two-mode binding of the excited states of T4 lysozyme mutants by alphaA-crystallin. J. Biol. Chem. 277, 40557–40566 (2002).

    Article  CAS  Google Scholar 

  60. Franzmann, T.M., Wühr, M., Richter, K., Walter, S. & Buchner, J. The activation mechanism of Hsp26 does not require dissociation of the oligomer. Dissociation is not required. J. Mol. Biol. 350, 1083–1093 (2005).

    Article  CAS  Google Scholar 

  61. Aquilina, J.A. et al. Subunit exchange of polydisperse proteins: mass spectrometry reveals consequences of alphaA-crystallin truncation. J. Biol. Chem. 280, 14485–14491 (2005).

    Article  CAS  Google Scholar 

  62. Ehrnsperger, M., Lilie, H., Gaestel, M. & Buchner, J. The dynamics of Hsp25 quaternary structure. Structure and function of different oligomeric species. J. Biol. Chem. 274, 14867–14874 (1999).

    Article  CAS  Google Scholar 

  63. Koteiche, H.A. & Mchaourab, H.S. Mechanism of chaperone function in small heat-shock proteins. Phosphorylation-induced activation of two-mode binding in alpha B-crystallin. J. Biol. Chem. 278, 10361–10367 (2003).

    Article  CAS  Google Scholar 

  64. Gaestel, M. sHsp-phosphorylation: enzymes, signaling pathways and functional implications. Prog. Mol. Subcell. Biol. 28, 151–169 (2002).

    Article  CAS  Google Scholar 

  65. Smulders, R.H. et al. The mutation Asp69→Ser affects the chaperone-like activity of alpha A-crystallin. Eur. J. Biochem. 232, 834–838 (1995).

    Article  CAS  Google Scholar 

  66. Lentze, N. & Narberhaus, F. Detection of oligomerisation and substrate recognition sites of small heat shock proteins by peptide arrays. Biochem. Biophys. Res. Commun. 325, 401–407 (2004).

    Article  CAS  Google Scholar 

  67. Ehrnsperger, M., Hergersberg, C., Wienhues, U., Nichtl, A. & Buchner, J. Stabilization of proteins and peptides in diagnostic immunological assays by the molecular chaperone Hsp25. Anal. Biochem. 259, 218–225 (1998).

    Article  CAS  Google Scholar 

  68. Kim, R. et al. On the mechanism of chaperone activity of the small heat-shock protein of Methanococcus jannaschii. Proc. Natl. Acad. Sci. USA 100, 8151–8155 (2003).

    Article  CAS  Google Scholar 

  69. Lee, S., Owen, H.A., Prochaska, D.J. & Barnum, S.R. HSP16.6 is involved in the development of thermotolerance and thylakoid stability in the unicellular cyanobacterium, Synechocystis sp PCC 6803. Curr. Microbiol. 40, 283–287 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to apologize to all researchers in the field to whose work we could not refer because of a limit on the number of citations. We thank C. Slingsby (Birkbeck College, London) and P. Stewart (Vanderbilt University Medical Center, Nashville, Tennessee, USA) for data on the oligomeric complexes of wheat Hsp16.9 and α-crystallin, respectively. Work in the authors' laboratory was supported by grants from the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie to J.B. and M.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Buchner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haslbeck, M., Franzmann, T., Weinfurtner, D. et al. Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 12, 842–846 (2005). https://doi.org/10.1038/nsmb993

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb993

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing