Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic options for targeting inflammatory osteoarthritis pain

Abstract

Pain is the major symptom of osteoarthritis (OA) and is an important factor in strategies to manage this disease. However, the current standard of care does not provide satisfactory pain relief for many patients. The pathophysiology of OA is complex, and its presentation as a clinical syndrome is associated with pathologies of multiple joint tissues. Inflammation is associated with both OA pain and disease outcome and is therefore a major treatment target for OA and OA pain. Unlike TNF inhibitors and IL-1 inhibitors, established drugs such as glucocorticoids and methotrexate can reduce OA pain. Although central nociceptive pathways contribute to OA pain, crosstalk between the immune system and nociceptive neurons is central to inflammatory pain; therefore, new therapies might target this crosstalk. Newly identified drug targets, including neurotrophins and the granulocyte–macrophage colony-stimulating factor (GM-CSF)–CC-chemokine ligand 17 (CCL17) chemokine axis, offer the hope of better results but require clinical validation.

Key points

  • Osteoarthritis (OA) pain is a financial, physical and psychological burden globally.

  • Inflammation is often associated with OA pain and the development of OA.

  • Pathological changes in central nociceptive pathways contribute to OA pain.

  • Bidirectional crosstalk between the immune and nervous systems regulates OA pain.

  • New therapeutics that target inflammation and the crosstalk between the immune and nervous systems are being developed to prevent and treat OA pain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The joint–spine–brain connection in OA nociception: anatomy of the basic pain pathway from the periphery to the brain.
Fig. 2: Crosstalk between non-neuronal cells and nociceptive neurons.
Fig. 3: A GM-CSF–CCL17 axis in inflammatory OA pain and disease.

Similar content being viewed by others

References

  1. Grace, P. M., Hutchinson, M. R., Maier, S. F. & Watkins, L. R. Pathological pain and the neuroimmune interface. Nat. Rev. Immunol. 14, 217–231 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Owens, C. & Conaghan, P. G. Improving joint pain and function in osteoarthritis. Practitioner 260, 17–20 (2016).

    PubMed  Google Scholar 

  3. O’Neil, C. K., Hanlon, J. T. & Marcum, Z. A. Adverse effects of analgesics commonly used by older adults with osteoarthritis: focus on non-opioid and opioid analgesics. Am. J. Geriatr. Pharmacother. 10, 331–342 (2012).

    PubMed  PubMed Central  Google Scholar 

  4. Wang, Y., Teichtahl, A. J. & Cicuttini, F. M. Osteoarthritis year in review 2015: imaging. Osteoarthritis Cartilage 24, 49–57 (2016).

    CAS  PubMed  Google Scholar 

  5. Haringman, J. J., Smeets, T. J., Reinders-Blankert, P. & Tak, P. P. Chemokine and chemokine receptor expression in paired peripheral blood mononuclear cells and synovial tissue of patients with rheumatoid arthritis, osteoarthritis, and reactive arthritis. Ann. Rheum. Dis. 65, 294–300 (2006).

    CAS  PubMed  Google Scholar 

  6. de Lange-Brokaar, B. J. et al. Degree of synovitis on MRI by comprehensive whole knee semi-quantitative scoring method correlates with histologic and macroscopic features of synovial tissue inflammation in knee osteoarthritis. Osteoarthritis Cartilage 22, 1606–1613 (2014).

    PubMed  Google Scholar 

  7. Cook, A. D., Christensen, A. D., Tewari, D., McMahon, S. B. & Hamilton, J. A. Immune cytokines and their receptors in inflammatory pain. Trends Immunol. 39, 240–255 (2018).

    CAS  PubMed  Google Scholar 

  8. Raoof, R., Willemen, H. & Eijkelkamp, N. Divergent roles of immune cells and their mediators in pain. Rheumatology 57, 429–440 (2018).

    CAS  PubMed  Google Scholar 

  9. Malfait, A. M. & Schnitzer, T. J. Towards a mechanism-based approach to pain management in osteoarthritis. Nat. Rev. Rheumatol. 9, 654–664 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bellamy, N. et al. Intraarticular corticosteroid for treatment of osteoarthritis of the knee. Cochrane Database Syst. Rev. 2, CD005328 (2006).

    Google Scholar 

  11. McAlindon, T. E. et al. Effect of intra-articular triamcinolone versus saline on knee cartilage volume and pain in patients with knee osteoarthritis: a randomized clinical trial. JAMA 317, 1967–1975 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Aitken, D. et al. A randomised double-blind placebo-controlled crossover trial of HUMira (adalimumab) for erosive hand OsteoaRthritis — the HUMOR trial. Osteoarthritis Cartilage 26, 880–887 (2018).

    CAS  PubMed  Google Scholar 

  13. Kloppenburg, M. et al. Etanercept in patients with inflammatory hand osteoarthritis (EHOA): a multicentre, randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 77, 1757–1764 (2018).

    CAS  PubMed  Google Scholar 

  14. Cohen, S. B. et al. A randomized, double-blind study of AMG 108 (a fully human monoclonal antibody to IL-1R1) in patients with osteoarthritis of the knee. Arthritis Res. Ther. 13, R125 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, S. X. et al. Safety, tolerability, and pharmacodynamics of an anti-interleukin-1alpha/beta dual variable domain immunoglobulin in patients with osteoarthritis of the knee: a randomized phase 1 study. Osteoarthritis Cartilage 25, 1952–1961 (2017).

    CAS  PubMed  Google Scholar 

  16. Eitner, A., Hofmann, G. O. & Schaible, H. G. Mechanisms of osteoarthritic pain. Studies in humans and experimental models. Front. Mol. Neurosci. 10, 349 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Buckley, C. D., Gilroy, D. W., Serhan, C. N., Stockinger, B. & Tak, P. P. The resolution of inflammation. Nat. Rev. Immunol. 13, 59–66 (2013).

    CAS  PubMed  Google Scholar 

  19. Ji, R. R., Xu, Z. Z. & Gao, Y. J. Emerging targets in neuroinflammation-driven chronic pain. Nat. Rev. Drug Discov. 13, 533–548 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. McMahon, S. B., La Russa, F. & Bennett, D. L. Crosstalk between the nociceptive and immune systems in host defence and disease. Nat. Rev. Neurosci. 16, 389–402 (2015).

    CAS  PubMed  Google Scholar 

  21. Pinho-Ribeiro, F. A. et al. Blocking neuronal signaling to immune cells treats streptococcal invasive infection. Cell 173, 1083–1097 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shechter, R. et al. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLOS Med. 6, e1000113 (2009).

    PubMed  PubMed Central  Google Scholar 

  23. Willemen, H. L. et al. Monocytes/macrophages control resolution of transient inflammatory pain. J. Pain 15, 496–506 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ellis, A. & Bennett, D. L. Neuroinflammation and the generation of neuropathic pain. Br. J. Anaesth. 111, 26–37 (2013).

    CAS  PubMed  Google Scholar 

  25. Barthel, C. et al. Nerve growth factor and receptor expression in rheumatoid arthritis and spondyloarthritis. Arthritis Res. Ther. 11, R82 (2009).

    PubMed  PubMed Central  Google Scholar 

  26. Skaper, S. D. Nerve growth factor: a neuroimmune crosstalk mediator for all seasons. Immunology 151, 1–15 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Denk, F., Bennett, D. L. & McMahon, S. B. Nerve growth factor and pain mechanisms. Annu. Rev. Neurosci. 40, 307–325 (2017).

    CAS  PubMed  Google Scholar 

  28. Minnone, G., De Benedetti, F. & Bracci-Laudiero, L. NGF and its receptors in the regulation of inflammatory response. Int. J. Mol. Sci. 18, E1028 (2017).

    PubMed  Google Scholar 

  29. Bagal, S. K. et al. Discovery of potent, selective, and peripherally restricted Pan-Trk kinase inhibitors for the treatment of pain. J. Med. Chem. 61, 6779–6800 (2018).

    CAS  PubMed  Google Scholar 

  30. Ji, R. R., Chamessian, A. & Zhang, Y. Q. Pain regulation by non-neuronal cells and inflammation. Science 354, 572–577 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Elenkov, I. J., Wilder, R. L., Chrousos, G. P. & Vizi, E. S. The sympathetic nerve — an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 52, 595–638 (2000).

    CAS  PubMed  Google Scholar 

  32. Straub, R. H. Complexity of the bi-directional neuroimmune junction in the spleen. Trends Pharmacol. Sci. 25, 640–646 (2004).

    CAS  PubMed  Google Scholar 

  33. Verri, W. A. Jr. et al. Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacol. Ther. 112, 116–138 (2006).

    CAS  PubMed  Google Scholar 

  34. Chiu, I. M., von Hehn, C. A. & Woolf, C. J. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat. Neurosci. 15, 1063–1067 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Schaible, H. G. Nociceptive neurons detect cytokines in arthritis. Arthritis Res. Ther. 16, 470 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. Bellinger, D. L. & Lorton, D. Autonomic regulation of cellular immune function. Auton. Neurosci. 182, 15–41 (2014).

    CAS  PubMed  Google Scholar 

  37. Straub, R. H. TRPV1, TRPA1, and TRPM8 channels in inflammation, energy redirection, and water retention: role in chronic inflammatory diseases with an evolutionary perspective. J. Mol. Med. 92, 925–937 (2014).

    CAS  PubMed  Google Scholar 

  38. Talbot, S., Foster, S. L. & Woolf, C. J. Neuroimmunity: physiology and pathology. Annu. Rev. Immunol. 34, 421–447 (2016).

    CAS  PubMed  Google Scholar 

  39. Chavan, S. S., Pavlov, V. A. & Tracey, K. J. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity 46, 927–942 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pinho-Ribeiro, F. A., Verri, W. A. Jr & Chiu, I. M. Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends Immunol. 38, 5–19 (2017).

    CAS  PubMed  Google Scholar 

  41. Malfait, A. M. & Miller, R. J. Emerging targets for the management of osteoarthritis pain. Curr. Osteoporos. Rep. 14, 260–268 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. Robinson, W. H. et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 12, 580–592 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hugle, T. & Geurts, J. What drives osteoarthritis?-synovial versus subchondral bone pathology. Rheumatology 56, 1461–1471 (2017).

    CAS  PubMed  Google Scholar 

  44. Hunter, D. J. et al. Systematic review of the concurrent and predictive validity of MRI biomarkers in OA. Osteoarthritis Cartilage 19, 557–588 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Roemer, F. W. et al. Can structural joint damage measured with MR imaging be used to predict knee replacement in the following year? Radiology 274, 810–820 (2015).

    PubMed  Google Scholar 

  46. de Lange-Brokaar, B. J. et al. Synovial inflammation, immune cells and their cytokines in osteoarthritis: a review. Osteoarthritis Cartilage 20, 1484–1499 (2012).

    PubMed  Google Scholar 

  47. Rahmati, M., Mobasheri, A. & Mozafari, M. Inflammatory mediators in osteoarthritis: a critical review of the state-of-the-art, current prospects, and future challenges. Bone 85, 81–90 (2016).

    CAS  PubMed  Google Scholar 

  48. Urban, H. & Little, C. B. The role of fat and inflammation in the pathogenesis and management of osteoarthritis. Rheumatology 57, iv10–iv21 (2018).

    CAS  PubMed  Google Scholar 

  49. Dawes, J. M., Kiesewetter, H., Perkins, J. R., Bennett, D. L. & McMahon, S. B. Chemokine expression in peripheral tissues from the monosodium iodoacetate model of chronic joint pain. Mol. Pain 9, 57 (2013).

    PubMed  PubMed Central  Google Scholar 

  50. Driscoll, C. et al. Nociceptive sensitizers are regulated in damaged joint tissues, including articular cartilage, when osteoarthritic mice display pain behavior. Arthritis Rheumatol. 68, 857–867 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. de Lange-Brokaar, B. J. et al. Association of pain in knee osteoarthritis with distinct patterns of synovitis. Arthritis Rheumatol. 67, 733–740 (2015).

    PubMed  Google Scholar 

  52. Yusup, A. et al. Bone marrow lesions, subchondral bone cysts and subchondral bone attrition are associated with histological synovitis in patients with end-stage knee osteoarthritis: a cross-sectional study. Osteoarthritis Cartilage 23, 1858–1864 (2015).

    CAS  PubMed  Google Scholar 

  53. Neogi, T. et al. Association of joint inflammation with pain sensitization in knee osteoarthritis: the Multicenter Osteoarthritis Study. Arthritis Rheumatol. 68, 654–661 (2016).

    PubMed  PubMed Central  Google Scholar 

  54. Petersen, K. K. et al. Sensitization and serological biomarkers in knee osteoarthritis patients with different degrees of synovitis. Clin. J. Pain 32, 841–848 (2016).

    PubMed  Google Scholar 

  55. Eberly, L. et al. Psychosocial and demographic factors influencing pain scores of patients with knee osteoarthritis. PLOS ONE 13, e0195075 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. Neogi, T. Structural correlates of pain in osteoarthritis. Clin. Exp. Rheumatol. 35 (Suppl. 107), 75–78 (2017).

    PubMed  Google Scholar 

  57. Riis, R. G. et al. Synovitis assessed on static and dynamic contrast-enhanced magnetic resonance imaging and its association with pain in knee osteoarthritis: a cross-sectional study. Eur. J. Radiol. 85, 1099–1108 (2016).

    PubMed  Google Scholar 

  58. Kaukinen, P. et al. Associations between MRI-defined structural pathology and generalized and localized knee pain — the Oulu Knee Osteoarthritis study. Osteoarthritis Cartilage 24, 1565–1576 (2016).

    CAS  PubMed  Google Scholar 

  59. Arendt-Nielsen, L. Pain sensitisation in osteoarthritis. Clin. Exp. Rheumatol. 35 (Suppl. 107), 68–74 (2017).

    PubMed  Google Scholar 

  60. Sweitzer, S. M., Hickey, W. F., Rutkowski, M. D., Pahl, J. L. & DeLeo, J. A. Focal peripheral nerve injury induces leukocyte trafficking into the central nervous system: potential relationship to neuropathic pain. Pain 100, 163–170 (2002).

    PubMed  Google Scholar 

  61. Hu, P., Bembrick, A. L., Keay, K. A. & McLachlan, E. M. Immune cell involvement in dorsal root ganglia and spinal cord after chronic constriction or transection of the rat sciatic nerve. Brain Behav. Immun. 21, 599–616 (2007).

    CAS  PubMed  Google Scholar 

  62. Lems, W. F. Bisphosphonates: a therapeutic option for knee osteoarthritis? Ann. Rheum. Dis. 77, 1247–1248 (2018).

    PubMed  Google Scholar 

  63. Osani, M. C., Vaysbrot, E. E., Zhou, M., McAlindon, T. E. & Bannuru, R. R. Duration of symptom relief and early trajectory of adverse events for oral NSAIDs in knee osteoarthritis: a systematic review and meta-analysis. Arthritis Care Res. https://doi.org/10.1002/acr.23884 (2019).

    Article  Google Scholar 

  64. Wenham, C. Y. et al. A randomized, double-blind, placebo-controlled trial of low-dose oral prednisolone for treating painful hand osteoarthritis. Rheumatology 51, 2286–2294 (2012).

    CAS  PubMed  Google Scholar 

  65. Dorleijn, D. M. J. et al. Intramuscular glucocorticoid injection versus placebo injection in hip osteoarthritis: a 12-week blinded randomised controlled trial. Ann. Rheum. Dis. 77, 875–882 (2018).

    CAS  PubMed  Google Scholar 

  66. Maricar, N. et al. Structural predictors of response to intra-articular steroid injection in symptomatic knee osteoarthritis. Arthritis Res. Ther. 19, 88 (2017).

    PubMed  PubMed Central  Google Scholar 

  67. McCabe, P. S. et al. Synovial fluid white blood cell count in knee osteoarthritis: association with structural findings and treatment response. Arthritis Rheumatol. 69, 103–107 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Baraf, H. S. B. et al. Effectiveness of FX006 intra-articular injection in patients with knee osteoarthritis who present with and without clinical inflammation at baseline: a pooled analysis of data from 3 double-blind, randomized, parallel-group clinical trials [abstract 934]. Arthritis Rheumatol. 35 (Suppl. 107), 68–74 (2017).

    Google Scholar 

  69. Stack, J. & McCarthy, G. Basic calcium phosphate crystals and osteoarthritis pathogenesis: novel pathways and potential targets. Curr. Opin. Rheumatol. 28, 122–126 (2016).

    CAS  PubMed  Google Scholar 

  70. Ea, H. K. et al. Articular cartilage calcification in osteoarthritis: insights into crystal-induced stress. Arthritis Rheum. 63, 10–18 (2011).

    CAS  PubMed  Google Scholar 

  71. Mahon, O. R. & Dunne, A. Disease-associated particulates and joint inflammation; mechanistic insights and potential therapeutic targets. Front. Immunol. 9, 1145 (2018).

    PubMed  PubMed Central  Google Scholar 

  72. Leung, Y. Y. et al. Colchicine lack of effectiveness in symptom and inflammation modification in knee osteoarthritis (COLKOA): a randomized controlled trial. Osteoarthritis Cartilage 26, 631–640 (2018).

    CAS  PubMed  Google Scholar 

  73. Tak, P. P. & Kalden, J. R. Advances in rheumatology: new targeted therapeutics. Arthritis Res. Ther. 13, S5 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kuznik, A. et al. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J. Immunol. 186, 4794–4804 (2011).

    CAS  PubMed  Google Scholar 

  75. Kingsbury, S. R. et al. Hydroxychloroquine effectiveness in reducing symptoms of hand osteoarthritis: a randomized trial. Ann. Intern. Med. 168, 385–395 (2018).

    PubMed  Google Scholar 

  76. Lee, W. et al. Efficacy of hydroxychloroquine in hand osteoarthritis: a randomized, double-blind, placebo-controlled trial. Arthritis Care Res. 70, 1320–1325 (2018).

    CAS  Google Scholar 

  77. Kraan, M. C. et al. Modulation of inflammation and metalloproteinase expression in synovial tissue by leflunomide and methotrexate in patients with active rheumatoid arthritis. Findings in a prospective, randomized, double-blind, parallel-design clinical trial in thirty-nine patients at two centers. Arthritis Rheum. 43, 1820–1830 (2000).

    CAS  PubMed  Google Scholar 

  78. Mangoni, A. A. et al. Protective effects of methotrexate against proatherosclerotic cytokines: a review of the evidence. Mediators Inflamm. 2017, 9632846 (2017).

    PubMed  PubMed Central  Google Scholar 

  79. Wenham, C. Y. et al. Methotrexate for pain relief in knee osteoarthritis: an open-label study. Rheumatology 52, 888–892 (2013).

    CAS  PubMed  Google Scholar 

  80. Kingsbury, S. R. et al. Pain reduction with oral methotrexate in knee osteoarthritis, a pragmatic phase iii trial of treatment effectiveness (PROMOTE): study protocol for a randomized controlled trial. Trials 16, 77 (2015).

    PubMed  PubMed Central  Google Scholar 

  81. Kingsbury, S. R. et al. Significant pain reduction with oral methotrexate in knee osteoarthritis; results from a randomised controlled phase III trial of treatment effectiveness [abstract 428]. Arthritis Rheumatol. 70 (Suppl. 9), 454–455 (2018).

    Google Scholar 

  82. Dimitroulas, T., Lambe, T., Klocke, R., Kitas, G. D. & Duarte, R. V. Biologic drugs as analgesics for the management of osteoarthritis. Semin. Arthritis Rheum. 46, 687–691 (2017).

    CAS  PubMed  Google Scholar 

  83. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    CAS  PubMed  Google Scholar 

  84. Kashyap, M. P., Roberts, C., Waseem, M. & Tyagi, P. Drug targets in neurotrophin signaling in the central and peripheral nervous system. Mol. Neurobiol. 55, 6939–6955 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Takano, S. et al. Nerve growth factor regulation and production by macrophages in osteoarthritic synovium. Clin. Exp. Immunol. 190, 235–243 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Walsh, D. A. et al. Angiogenesis and nerve growth factor at the osteochondral junction in rheumatoid arthritis and osteoarthritis. Rheumatology 49, 1852–1861 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Jayabalan, P. & Schnitzer, T. J. Tanezumab in the treatment of chronic musculoskeletal conditions. Expert Opin. Biol. Ther. 17, 245–254 (2017).

    CAS  PubMed  Google Scholar 

  88. Bannwarth, B. & Kostine, M. Nerve growth factor antagonists: is the future of monoclonal antibodies becoming clearer? Drugs 77, 1377–1387 (2017).

    CAS  PubMed  Google Scholar 

  89. Miller, R. E., Block, J. A. & Malfait, A. M. Nerve growth factor blockade for the management of osteoarthritis pain: what can we learn from clinical trials and preclinical models? Curr. Opin. Rheumatol. 29, 110–118 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02508155 (2019).

  91. Nwosu, L. N., Mapp, P. I., Chapman, V. & Walsh, D. A. Blocking the tropomyosin receptor kinase A (TrkA) receptor inhibits pain behaviour in two rat models of osteoarthritis. Ann. Rheum. Dis. 75, 1246–1254 (2016).

    CAS  PubMed  Google Scholar 

  92. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03227796 (2019).

  93. Cui, M. et al. TRPV1 receptors in the CNS play a key role in broad-spectrum analgesia of TRPV1 antagonists. J. Neurosci. 26, 9385–9393 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Baamonde, A., Lastra, A., Juarez, L., Hidalgo, A. & Menendez, L. TRPV1 desensitisation and endogenous vanilloid involvement in the enhanced analgesia induced by capsaicin in inflamed tissues. Brain Res. Bull. 67, 476–481 (2005).

    CAS  PubMed  Google Scholar 

  95. Persson, M. S. M., Stocks, J., Walsh, D. A., Doherty, M. & Zhang, W. The relative efficacy of topical non-steroidal anti-inflammatory drugs and capsaicin in osteoarthritis: a network meta-analysis of randomised controlled trials. Osteoarthritis Cartilage 26, 1575–1582 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Stevens, R. et al. Efficacy and safety of Cntx-4975 in subjects with moderate to severe osteoarthritis knee pain: 24-week, randomized, double-blind, placebo-controlled, dose-ranging study [abstract 1191]. Arthritis Rheumatol. 69 (Suppl. 10), 1705–1706 (2017).

    Google Scholar 

  97. Hamilton, J. A., Cook, A. D. & Tak, P. P. Anti-colony-stimulating factor therapies for inflammatory and autoimmune diseases. Nat. Rev. Drug Discov. 16, 53–70 (2017).

    CAS  Google Scholar 

  98. Cook, A. D. et al. Granulocyte-macrophage colony-stimulating factor is a key mediator in experimental osteoarthritis pain and disease development. Arthritis Res. Ther. 14, R199 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Schett, G. et al. A phase IIA study of anti-GM-CSF antibody GSK3196165 in subjects with inflammatory hand osteoarthritis [abstract 1365]. Arthritis Rheumatol. 70 (Suppl. 9), 1494 (2018).

    Google Scholar 

  100. Achuthan, A. et al. Granulocyte macrophage colony-stimulating factor induces CCL17 production via IRF4 to mediate inflammation. J. Clin. Invest. 126, 3453–3466 (2016).

    PubMed  PubMed Central  Google Scholar 

  101. Cook, A. D. et al. TNF and granulocyte macrophage-colony stimulating factor interdependence mediates inflammation via CCL17. JCI Insight 3, e99249 (2018).

    PubMed Central  Google Scholar 

  102. Lee, M. C. et al. CCL17 blockade as a therapy for osteoarthritis pain and disease. Arthritis Res. Ther. 20, 62 (2018).

    PubMed  PubMed Central  Google Scholar 

  103. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03485365 (2018).

  104. Wylde, V., Hewlett, S., Learmonth, I. D. & Dieppe, P. Persistent pain after joint replacement: prevalence, sensory qualities, and postoperative determinants. Pain 152, 566–572 (2011).

    PubMed  Google Scholar 

  105. Beswick, A. D., Wylde, V., Gooberman-Hill, R., Blom, A. & Dieppe, P. What proportion of patients report long-term pain after total hip or knee replacement for osteoarthritis? A systematic review of prospective studies in unselected patients. BMJ Open 2, e000435 (2012).

    PubMed  PubMed Central  Google Scholar 

  106. Woolf, C. J. Central sensitization: implications for the diagnosis and treatment of pain. Pain 152, S2–S15 (2011).

    PubMed  Google Scholar 

  107. Huh, Y., Ji, R. R. & Chen, G. Neuroinflammation, bone marrow stem cells, and chronic pain. Front. Immunol. 8, 1014 (2017).

    PubMed  PubMed Central  Google Scholar 

  108. Isami, K. et al. The impact of mouse strain-specific spatial and temporal immune responses on the progression of neuropathic pain. Brain Behav. Immun. 74, 121–132 (2018).

    CAS  PubMed  Google Scholar 

  109. Graeber, M. B. & Christie, M. J. Multiple mechanisms of microglia: a gatekeeper’s contribution to pain states. Exp. Neurol. 234, 255–261 (2012).

    CAS  PubMed  Google Scholar 

  110. Yang, M. et al. CD11b-activated Src signal attenuates neuroinflammatory pain by orchestrating inflammatory and anti-inflammatory cytokines in microglia. Mol. Pain 14, 1744806918808150 (2018).

    PubMed Central  PubMed  Google Scholar 

  111. Liu, T., van Rooijen, N. & Tracey, D. J. Depletion of macrophages reduces axonal degeneration and hyperalgesia following nerve injury. Pain 86, 25–32 (2000).

    CAS  PubMed  Google Scholar 

  112. Mert, T. et al. Macrophage depletion delays progression of neuropathic pain in diabetic animals. Naunyn Schmiedebergs Arch. Pharmacol. 379, 445–452 (2009).

    CAS  PubMed  Google Scholar 

  113. Li, Y. et al. Dorsal root ganglion neurons become hyperexcitable and increase expression of voltage-gated T-type calcium channels (Cav3.2) in paclitaxel-induced peripheral neuropathy. Pain 158, 417–429 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Li, H., Wang, R., Lu, Y., Xu, X. & Ni, J. Targeting G protein-coupled receptor for pain management. Brain Circ. 3, 109–113 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

P.G.C. acknowledges that his research is supported by the UK National Institute of Health Research (NIHR) Leeds Biomedical Research Centre. The views expressed are those of the authors and not necessarily those of the UK National Health Service (NHS), the NIHR or the Department of Health.

Reviewer information

Nature Reviews Rheumatology thanks R. Loeser and the other anonymous reviewer(s), for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

P.G.C. and P.P.T researched data for the article. All authors contributed to discussions of its content and the writing and review or editing of the manuscript before submission.

Corresponding author

Correspondence to Paul P. Tak.

Ethics declarations

Competing interests

P.G.C. declares that he has participated in speakers bureaus or is on advisory boards for AbbVie, BMS, Flexion Therapeutics, GSK, Merck Serono, Novartis, Pfizer, Roche and Samumed. J.A.H. declares that he has been a consultant for GSK. P.P.T. declares that he was an employee and shareholder of GSK and is presently non-executive director of Levicept. A.D.C. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Neurotrophins

A family of proteins that regulate the development, maintenance and function of the nervous system.

Action potentials

A rapid rise and subsequent fall in voltage or membrane potential across a cellular membrane that occurs when a neuron sends information down an axon, away from the cell body.

Peak dose

After administration, the highest concentration of the drug reached in the body.

Washout

When a patient stops taking medication before beginning a drug treatment trial.

Intention-to-treat analysis

A method for analysing results in prospective randomized studies in which all participants who are randomized are included in the statistical analysis and are analysed according to the group they were originally assigned, regardless of the treatment they received.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conaghan, P.G., Cook, A.D., Hamilton, J.A. et al. Therapeutic options for targeting inflammatory osteoarthritis pain. Nat Rev Rheumatol 15, 355–363 (2019). https://doi.org/10.1038/s41584-019-0221-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-019-0221-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing