Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New approaches for brain repair—from rescue to reprogramming

Abstract

The ability to repair or promote regeneration within the adult human brain has been envisioned for decades. Until recently, such efforts mainly involved delivery of growth factors and cell transplants designed to rescue or replace a specific population of neurons, and the results have largely been disappointing. New approaches using stem-cell-derived cell products and direct cell reprogramming have opened up the possibility of reconstructing neural circuits and achieving better repair. In this Review we briefly summarize the history of neural repair and then discuss these new therapeutic approaches, especially with respect to chronic neurodegenerative disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies to repair the diseased brain.
Fig. 2: Strategies for in situ repair.

Similar content being viewed by others

References

  1. Adams, K. L. & Gallo, V. The diversity and disparity of the glial scar. Nat. Neurosci. 21, 9–15 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Fawcett, J. W. The extracellular matrix in plasticity and regeneration after CNS injury and neurodegenerative disease. Prog. Brain Res. 218, 213–226 (2015).

    Article  PubMed  Google Scholar 

  3. Chieffi, S. et al. Neuroprotective effects of physical activity: evidence from human and animal studies. Front. Neurol. 8, 188 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bartus, R. T. & Johnson, E. M. Jr. Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 1: where have we been and what have we learned? Neurobiol. Dis. 97, 156–168 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Bartus, R. T. & Johnson, E. M. Jr. Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 2: where do we stand and where must we go next? Neurobiol. Dis. 97, 169–178 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Gill, S. S. et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat. Med. 9, 589–595 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Patel, N. K. et al. Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: a two-year outcome study. Ann. Neurol. 57, 298–302 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Slevin, J. T. et al. Unilateral intraputamenal glial cell line-derived neurotrophic factor in patients with Parkinson disease: response to 1 year of treatment and 1 year of withdrawal. J. Neurosurg. 106, 614–620 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Love, S. et al. Glial cell line-derived neurotrophic factor induces neuronal sprouting in human brain. Nat. Med. 11, 703–704 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Lang, A. E. et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann. Neurol. 59, 459–466 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Barker, R. A. Continuing trials of GDNF in Parkinson’s disease. Lancet Neurol. 5, 285–286 (2006).

    Article  PubMed  Google Scholar 

  12. Runeberg-Roos, P. et al. Developing therapeutically more efficient Neurturin variants for treatment of Parkinson’s disease. Neurobiol. Dis. 96, 335–345 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Marks, W. J. Jr et al. Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol. 9, 1164–1172 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Warren Olanow, C. et al. Gene delivery of neurturin to putamen and substantia nigra in Parkinson disease: a double-blind, randomized, controlled trial. Ann. Neurol. 78, 248–257 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Bartus, R. T. et al. Post-mortem assessment of the short and long-term effects of the trophic factor neurturin in patients with α-synucleinopathies. Neurobiol. Dis. 78, 162–171 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Decressac, M. et al. α-Synuclein-induced down-regulation of Nurr1 disrupts GDNF signaling in nigral dopamine neurons. Sci. Transl. Med. 4, 163ra156 (2012).

    Article  PubMed  CAS  Google Scholar 

  17. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Das, M. M. et al. Human neural progenitors differentiate into astrocytes and protect motor neurons in aging rats. Exp. Neurol. 280, 41–49 (2016).

    Article  PubMed  Google Scholar 

  19. Lepore, A. C. et al. Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nat. Neurosci. 11, 1294–1301 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang, S. et al. Antibody recognizing 4-sulfated chondroitin sulfate proteoglycans restores memory in tauopathy-induced neurodegeneration. Neurobiol. Aging 59, 197–209 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Bradbury, E. J. et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636–640 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Barker, R. A., Drouin-Ouellet, J. & Parmar, M. Cell-based therapies for Parkinson disease—past insights and future potential. Nat. Rev. Neurol. 11, 492–503 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Barker, R. A., Barrett, J., Mason, S. L. & Björklund, A. Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson’s disease. Lancet Neurol. 12, 84–91 (2013). A useful summary of all the data from trials of fetal ventral midbrain transplantation in patients with Parkinson’s disease over the last 25 years and their conclusions.

    Article  CAS  PubMed  Google Scholar 

  24. Li, W. et al. Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain. Proc. Natl Acad. Sci. USA 113, 6544–6549 (2016). A key study showing good graft survival and transplantation in a patient with Parkinson’s disease 24 years after transplantation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kefalopoulou, Z. et al. Long-term clinical outcome of fetal cell transplantation for Parkinson disease: two case reports. JAMA Neurol. 71, 83–87 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hauser, R. A. et al. Long-term evaluation of bilateral fetal nigral transplantation in Parkinson disease. Arch. Neurol. 56, 179–187 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Mendez, I. et al. Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson’s disease. Brain 128, 1498–1510 (2005).

    Article  PubMed  Google Scholar 

  28. Li, J. Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat. Med. 14, 501–503 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Kurowska, Z. et al. Signs of degeneration in 12–22-year old grafts of mesencephalic dopamine neurons in patients with Parkinson’s disease. J. Parkinsons Dis. 1, 83–92 (2011).

    Article  PubMed  Google Scholar 

  30. Politis, M. et al. Serotonergic neurons mediate dyskinesia side effects in Parkinson’s patients with neural transplants. Sci. Transl. Med. 2, 38ra46 (2010).

    Article  PubMed  CAS  Google Scholar 

  31. Freed, C. R. et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med. 344, 710–719 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Olanow, C. W. et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann. Neurol. 54, 403–414 (2003).

    Article  PubMed  Google Scholar 

  33. Bachoud-Lévi, A. et al. Safety and tolerability assessment of intrastriatal neural allografts in five patients with Huntington’s disease. Exp. Neurol. 161, 194–202 (2000).

    Article  PubMed  Google Scholar 

  34. Barker, R. A. et al. The long-term safety and efficacy of bilateral transplantation of human fetal striatal tissue in patients with mild to moderate Huntington’s disease. J. Neurol. Neurosurg. Psychiatry 84, 657–665 (2013).

    Article  PubMed  Google Scholar 

  35. Hauser, R. A. et al. Bilateral human fetal striatal transplantation in Huntington’s disease. Neurology 58, 687–695 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Peschanski, M., Cesaro, P. & Hantraye, P. Rationale for intrastriatal grafting of striatal neuroblasts in patients with Huntington’s disease. Neuroscience 68, 273–285 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Cisbani, G. & Cicchetti, F. The fate of cell grafts for the treatment of Huntington’s disease: the post-mortem evidence. Neuropathol. Appl. Neurobiol. 40, 71–90 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Steinbeck, J. A. & Studer, L. Moving stem cells to the clinic: potential and limitations for brain repair. Neuron 86, 187–206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barker, R. A., Parmar, M., Studer, L. & Takahashi, J. Human trials of stem cell-derived dopamine neurons for Parkinson’s disease: dawn of a new era. Cell Stem Cell 21, 569–573 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Abbott, A. Fetal-cell revival for Parkinson’s. Nature 510, 195–196 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Kirkeby, A. et al. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Reports 1, 703–714 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Kikuchi, T. et al. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature 548, 592–596 (2017). An important study showing the long-term survival and functional efficacy of iPS-cell-derived dopamine cells (including from patients with Parkinson’s disease) in non-human primate models of Parkinson’s disease.

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Grealish, S. et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 15, 653–665 (2014). An key study showing that grafted stem-cell-derived dopamine neurons function equivalently to fetal cells in terms of maturation, innervation capacity, potency and function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grealish, S. et al. Monosynaptic tracing using modified rabies virus reveals early and extensive circuit integration of human embryonic stem cell-derived neurons. Stem Cell Reports 4, 975–983 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen, Y. et al. Chemical control of grafted human PSC-derived neurons in a mouse model of Parkinson’s disease. Cell Stem Cell 18, 817–826 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Delli Carri, A. et al. Human pluripotent stem cell differentiation into authentic striatal projection neurons. Stem Cell Rev. 9, 461–474 (2013).

    Article  CAS  Google Scholar 

  47. Reidling, J. C. et al. Human neural stem cell transplantation rescues functional deficits in R6/2 and Q140 Huntington’s disease mice. Stem Cell Reports 10, 58–72 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Ma, L. et al. Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice. Cell Stem Cell 10, 455–464 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cisbani, G. et al. Striatal allografts in patients with Huntington’s disease: impact of diminished astrocytes and vascularization on graft viability. Brain 136, 433–443 (2013).

    Article  PubMed  Google Scholar 

  50. Kokaia, Z. & Lindvall, O. Stem cell repair of striatal ischemia. Prog. Brain Res. 201, 35–53 (2012).

    Article  PubMed  Google Scholar 

  51. Cicchetti, F. et al. Mutant huntingtin is present in neuronal grafts in Huntington disease patients. Ann. Neurol. 76, 31–42 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Ladewig, J., Koch, P. & Brüstle, O. Auto-attraction of neural precursors and their neuronal progeny impairs neuronal migration. Nat. Neurosci. 17, 24–26 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Battista, D., Ganat, Y., El Maarouf, A., Studer, L. & Rutishauser, U. Enhancement of polysialic acid expression improves function of embryonic stem-derived dopamine neuron grafts in Parkinsonian mice. Stem Cells Transl. Med. 3, 108–113 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Morizane, A. et al. MHC matching improves engraftment of iPSC-derived neurons in non-human primates. Nat. Commun. 8, 385 (2017).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  55. Gornalusse, G. G. et al. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat. Biotechnol. 35, 765–772 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Aldrin-Kirk, P. et al. DREADD modulation of transplanted DA neurons reveals a novel Parkinsonian dyskinesia mechanism mediated by the serotonin 5-HT6 receptor. Neuron 90, 955–968 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Steinbeck, J. A. et al. Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson’s disease model. Nat. Biotechnol. 33, 204–209 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Espuny-Camacho, I. et al. Hallmarks of Alzheimer’s disease in stem-cell-derived human neurons transplanted into mouse brain. Neuron 93, 1066–1081 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Falkner, S. et al. Transplanted embryonic neurons integrate into adult neocortical circuits. Nature 539, 248–253 (2016).

    Article  ADS  PubMed  CAS  Google Scholar 

  60. Espuny-Camacho, I. et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron 77, 440–456 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Tornero, D. et al. Synaptic inputs from stroke-injured brain to grafted human stem cell-derived neurons activated by sensory stimuli. Brain 140, 692–706 (2017).

    PubMed  Google Scholar 

  62. Michelsen, K. A. et al. Area-specific reestablishment of damaged circuits in the adult cerebral cortex by cortical neurons derived from mouse embryonic stem cells. Neuron 85, 982–997 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Grade, S. & Götz, M. Neuronal replacement therapy: previous achievements and challenges ahead. NPJ Regen. Med. 2, 29 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  64. Frisén, J. Neurogenesis and gliogenesis in nervous system plasticity and repair. Annu. Rev. Cell Dev. Biol. 32, 127–141 (2016).

    Article  PubMed  CAS  Google Scholar 

  65. Paredes, M. F., Sorrells, S. F., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Brain size and limits to adult neurogenesis. J. Comp. Neurol. 524, 646–664 (2016).

    Article  PubMed  Google Scholar 

  66. Nakatomi, H. et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110, 429–441 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z. & Lindvall, O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8, 963–970 (2002). An early study that provided important evidence for endogenous neurogenesis after brain injury.

    Article  CAS  PubMed  Google Scholar 

  68. Thored, P. et al. Long-term neuroblast migration along blood vessels in an area with transient angiogenesis and increased vascularization after stroke. Stroke 38, 3032–3039 (2007).

    Article  PubMed  Google Scholar 

  69. Lipp, H. P. & Bonfanti, L. Adult neurogenesis in mammals: variations and confusions. Brain Behav. Evol. 87, 205–221 (2016).

    Article  PubMed  Google Scholar 

  70. Wang, C. et al. Human and monkey striatal interneurons are derived from the medial ganglionic eminence but not from the adult subventricular zone. J. Neurosci. 34, 10906–10923 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Ernst, A. et al. Neurogenesis in the striatum of the adult human brain. Cell 156, 1072–1083 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Grande, A. et al. Environmental impact on direct neuronal reprogramming in vivo in the adult brain. Nat. Commun. 4, 2373 (2013).

    Article  ADS  PubMed  Google Scholar 

  73. Magnusson, J. P. et al. A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse. Science 346, 237–241 (2014). This work shows the in vivo conversion of astrocytes into neurons solely by removing Notch signalling and that this conversion occurs in an interesting region-specific manner only in the striatum, showing that these astrocytes are more prone to neurogenesis than others.

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Benner, E. J. et al. Protective astrogenesis from the SVZ niche after injury is controlled by Notch modulator Thbs4. Nature 497, 369–373 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Heins, N. et al. Glial cells generate neurons: the role of the transcription factor Pax6. Nat. Neurosci. 5, 308–315 (2002). This work pioneered the approach of converting glial cells into neurons and showed the successful conversion of postnatal glial cells into neurons.

    Article  CAS  PubMed  Google Scholar 

  76. Buffo, A. et al. Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair. Proc. Natl Acad. Sci. USA 102, 18183–18188 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ohori, Y. et al. Growth factor treatment and genetic manipulation stimulate neurogenesis and oligodendrogenesis by endogenous neural progenitors in the injured adult spinal cord. J. Neurosci. 26, 11948–11960 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kronenberg, G. et al. Modulation of fate determinants Olig2 and Pax6 in resident glia evokes spiking neuroblasts in a model of mild brain ischemia. Stroke 41, 2944–2949 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Gascón, S., Masserdotti, G., Russo, G. L. & Götz, M. Direct neuronal reprogramming: achievements, hurdles, and new roads to success. Cell Stem Cell 21, 18–34 (2017).

    Article  PubMed  CAS  Google Scholar 

  80. Torper, O. et al. In vivo reprogramming of striatal NG2 glia into functional neurons that integrate into local host circuitry. Cell Rep. 12, 474–481 (2015). This work shows the in vivo connectivity of reprogrammed neurons in the striatum that receive local, but not long-distance, inputs.

    Article  CAS  PubMed  Google Scholar 

  81. Torper, O. et al. Generation of induced neurons via direct conversion in vivo. Proc. Natl Acad. Sci. USA 110, 7038–7043 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Masserdotti, G., Gascón, S. & Götz, M. Direct neuronal reprogramming: learning from and for development. Development 143, 2494–2510 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Guo, Z. et al. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell 14, 188–202 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Gascón, S. et al. Identification and successful negotiation of a metabolic checkpoint in direct neuronal reprogramming. Cell Stem Cell 18, 396–409 (2016). This work revealed a metabolic hurdle during the direct reprogramming of glia and many other cell types into neurons and showed that protecting neurons from death and ROS resulted in very high conversion efficiency in the injured mouse cerebral cortex in vivo.

    Article  PubMed  CAS  Google Scholar 

  85. Wang, L. L. & Zhang, C. L. Engineering new neurons: in vivo reprogramming in mammalian brain and spinal cord. Cell Tissue Res. 371, 201–212 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Southwell, D. G., Froemke, R. C., Alvarez-Buylla, A., Stryker, M. P. & Gandhi, S. P. Cortical plasticity induced by inhibitory neuron transplantation. Science 327, 1145–1148 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tang, Y., Stryker, M. P., Alvarez-Buylla, A. & Espinosa, J. S. Cortical plasticity induced by transplantation of embryonic somatostatin or parvalbumin interneurons. Proc. Natl Acad. Sci. USA 111, 18339–18344 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dimou, L. & Götz, M. Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain. Physiol. Rev. 94, 709–737 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Heinrich, C. et al. Sox2-mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortex. Stem Cell Reports 3, 1000–1014 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Niu, W. et al. SOX2 reprograms resident astrocytes into neural progenitors in the adult brain. Stem Cell Reports 4, 780–794 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu, Y. et al. Ascl1 converts dorsal midbrain astrocytes into functional neurons in vivo. J. Neurosci. 35, 9336–9355 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Deverman, B. E. et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34, 204–209 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vagner, T., Dvorzhak, A., Wójtowicz, A. M., Harms, C. & Grantyn, R. Systemic application of AAV vectors targeting GFAP-expressing astrocytes in Z-Q175-KI Huntington’s disease mice. Mol. Cell. Neurosci. 77, 76–86 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Kunze, C. et al. Synthetic AAV/CRISPR vectors for blocking HIV-1 expression in persistently infected astrocytes. Glia 66, 413–427 (2018).

    Article  PubMed  Google Scholar 

  95. Pereira, M. et al. Direct reprogramming of resident NG2 glia into neurons with properties of fast-spiking parvalbumin-containing interneurons. Stem Cell Reports 9, 742–751 (2017). This work shows how a very precise neuronal subtype can be achieved by targeting a specific glial subtype.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rivetti di Val Cervo, P. et al. Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson’s disease model. Nat. Biotechnol. 35, 444–452 (2017).

    Article  PubMed  CAS  Google Scholar 

  97. Karow, M. et al. Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell 11, 471–476 (2012). This study showed that non-neuronal cells from the adult human brain could be successfully converted into functional neurons, opening up the possibility of using direct in vivo neuronal reprogramming for human patients.

    Article  CAS  PubMed  Google Scholar 

  98. Pfisterer, U. et al. Direct conversion of human fibroblasts to dopaminergic neurons. Proc. Natl Acad. Sci. USA 108, 10343–10348 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Drouin-Ouellet, J. et al. REST suppression mediates neural conversion of adult human fibroblasts via microRNA-dependent and -independent pathways. EMBO Mol. Med. 9, 1117–1131 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pang, Z. P. et al. Induction of human neuronal cells by defined transcription factors. Nature 476, 220–223 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang, L. et al. Small molecules efficiently reprogram human astroglial cells into functional neurons. Cell Stem Cell 17, 735–747 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

R.A.B. is funded by the NIHR Biomedical Research Centre in Cambridge, Cure PD, PDUK, European Research Council under the European Union’s Seventh Framework Programme: FP/2007-2013 NeuroStemcellRepair (no. 602278), Wellcome Trust MRC Stem Cell Institute and MRC UKRMP PSCP. He has received consultancy payments from FCDI and LCT. M.G. is funded by the German Research Foundation (CRC870, SPP1738, 1757, EXC1010 Synergy), The Ministry of Science and Research (MAIV), ERANET and the ERC (ChroNeuroRepair). M.P. receives funding from the New York Stem Cell Foundation, the European Research Council under the European Union’s Seventh Framework Programme: FP/2007-2013 NeuroStemcellRepair (no. 602278) and ERC Grant Agreement no. 30971, the Swedish Research Council and the Strategic Research Area Multipark at Lund University. M.P. is a New York Stem Cell Foundation Robertson Investigator. We thank D. Daft for her help in the preparation of this manuscript.

Reviewer information

Nature thanks P. Arlotta, J. Takahashi and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All three authors contributed to the design, writing and critical review of this manuscript.

Corresponding authors

Correspondence to Roger A. Barker, Magdalena Götz or Malin Parmar.

Ethics declarations

Competing interests

M.P. is the owner of Parmar Cells AB and co-inventor on US patent applications 15/093,927 owned by Biolamina AB and EP17181588 owned by Miltenyi Biotec. Patent WO 2015/114059 A1 patents the use of BCL2 in reprogramming. R.A.B. and M.G. have no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barker, R.A., Götz, M. & Parmar, M. New approaches for brain repair—from rescue to reprogramming. Nature 557, 329–334 (2018). https://doi.org/10.1038/s41586-018-0087-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0087-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing