Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Selective gene expression in brain microglia mediated via adeno-associated virus type 2 and type 5 vectors

Abstract

Microglia represent a crucial cell population in the central nervous system, participating in the regulation and surveillance of physiological processes as well as playing key roles in the etiologies of several major brain disorders. The ability to target gene transfer vehicles selectively to microglia would provide a powerful new approach to investigations of mechanisms regulating brain pathologies, as well as enable the development of novel therapeutic strategies. In this study, we evaluate the feasibility of specifically and efficiently targeting microglia relative to other brain cells, using vectors based on two different serotypes of adeno-associated virus (AAV) carrying cell-type-specific transcriptional elements to regulate gene expression. Among a set of promoter choices examined, an element derived from the gene for the murine macrophage marker F4/80 was the most discriminating for microglia. Gene expression from vectors controlled by this element was highly selective for microglia, both in vitro and in vivo. To our knowledge, this is the first demonstration of selective expression of transferred genes in microglia using AAV-derived vectors, as well as the first utilization of recombinant AAV-5 vectors in any macrophage lineage. These results provide strong encouragement for the application of these vectors and this approach for delivering therapeutic and other genes selectively to microglia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Sawada M et al. Brain-specific gene expression by immortalized microglial cell-mediated gene transfer in the mammalian brain. FEBS Lett 1998; 433: 37–40.

    Article  CAS  PubMed  Google Scholar 

  2. Benninger Y et al. Differentiation and histological analysis of embryonic stem cell-derived neural transplants in mice. Brain Pathol 2000; 10: 330–341.

    Article  CAS  PubMed  Google Scholar 

  3. Lynch WP, Sharpe AH, Snyder EY . Neural stem cells as engraftable packaging lines can mediate gene delivery to microglia: evidence from studying retroviral env-related neurodegeneration. J Virol 1999; 73: 6841–6851.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Samulski RJ, Chang LS, Shenk T . Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol 1989; 63: 3822–3828.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Flotte TR et al. Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector. Proc Natl Acad Sci U S A 1993; 90: 10613–10617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xiao X, Li J, Samulski RJ . Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 1996; 70: 8098–8108.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wood MJ et al. Inflammatory effects of gene transfer into the CNS with defective HSV-1 vectors. Gene Ther 1994; 1: 283–291.

    CAS  PubMed  Google Scholar 

  8. Byrnes AP, Rusby JE, Wood MJ, Charlton HM . Adenovirus gene transfer causes inflammation in the brain. Neuroscience 1995; 66: 1015–1024.

    Article  CAS  PubMed  Google Scholar 

  9. Lawrence MS et al. Inflammatory responses and their impact on beta-galactosidase transgene expression following adenovirus vector delivery to the primate caudate nucleus. Gene Ther 1999; 6: 1368–1379.

    Article  CAS  PubMed  Google Scholar 

  10. Yang CC et al. Cellular recombination pathways and viral terminal repeat hairpin structures are sufficient for adeno-associated virus integration in vivo and in vitro. J Virol 1997; 71: 9231–9247.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Flotte TR, Afione SA, Zeitlin PL . Adeno-associated virus vector gene expression occurs in nondividing cells in the absence of vector DNA integration. Am J Respir Cell Mol Biol 1994; 11: 517–521.

    Article  CAS  PubMed  Google Scholar 

  12. Inouye RT et al. Potent inhibition of human immunodeficiency virus type 1 in primary T cells and alveolar macrophages by a combination anti-Rev strategy delivered in an adeno-associated virus vector. J Virol 1997; 71: 4071–4078.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Snyder RO et al. Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors. Nat Med 1999; 5: 64–70.

    Article  CAS  PubMed  Google Scholar 

  14. Keir SD et al. Gene transfer into hypothalamic organotypic cultures using an adeno-associated virus vector. Exp Neurol 1999; 160: 313–316.

    Article  CAS  PubMed  Google Scholar 

  15. Kaplitt MG et al. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet 1994; 8: 148–154.

    CAS  PubMed  Google Scholar 

  16. Klein RL et al. Neuron-specific transduction in the rat septohippocampal or nigrostriatal pathway by recombinant adeno-associated virus vectors. Exp Neurol 1998; 150: 183–194.

    CAS  PubMed  Google Scholar 

  17. Wu P, Phillips MI, Bui J, Terwilliger EF . Adeno-associated virus vector-mediated transgene integration into neurons and other nondividing cell targets. J Virol 1998; 72: 5919–5926.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pitkow LJ et al. Facilitation of affiliation and pair-bond formation by vasopressin receptor gene transfer into the ventral forebrain of a monogamous vole. J Neurosci 2001; 21: 7392–7396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Du B, Wu P, Boldt-Houle DM, Terwilliger EF . Efficient transduction of human neurons with an adeno-associated virus vector. Gene Ther 1996; 3: 254–261.

    CAS  PubMed  Google Scholar 

  20. Chamberlin NL, Du B, de Lacalle S, Saper CB . Recombinant adeno-associated virus vector: use for transgene expression and anterograde tract tracing in the CNS. Brain Res 1998; 793: 169–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Doll RF et al. Comparison of promoter strengths on gene delivery into mammalian brain cells using AAV vectors. Gene Ther 1996; 3: 437–447.

    CAS  PubMed  Google Scholar 

  22. Chen H, McCarty DM, Bruce AT, Suzuki K . Gene transfer and expression in oligodendrocytes under the control of myelin basic protein transcriptional control region mediated by adeno-associated virus. Gene Ther 1998; 5: 50–58.

    Article  PubMed  Google Scholar 

  23. Bantel-Schaal U, Delius H, Schmidt R, zur Hausen H . Human adeno-associated virus type 5 is only distantly related to other known primate helper-dependent parvoviruses. J Virol 1999; 73: 939–947.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chiorini JA, Kim F, Yang L, Kotin RM . Cloning and characterization of adeno-associated virus type 5. J Virol 1999; 73: 1309–1319.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Austyn JM, Gordon S . F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol 1981; 11: 805–815.

    Article  CAS  PubMed  Google Scholar 

  26. Perry VH, Hume DA, Gordon S . Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 1985; 15: 313–326.

    Article  CAS  PubMed  Google Scholar 

  27. Peudenier S, Hery C, Montagnier L, Tardieu M . Human microglial cells: characterization in cerebral tissue and in primary culture, and study of their susceptibility to HIV-1 infection. Ann Neurol 1991; 29: 152–161.

    Article  CAS  PubMed  Google Scholar 

  28. McKnight AJ, Gordon S . The EGF-TM7 family: unusual structures at the leukocyte surface. J Leukoc Biol 1998; 63: 271–280.

    Article  CAS  PubMed  Google Scholar 

  29. Pahl HL, Rosmarin AG, Tenen DG . Characterization of the myeloid-specific CD11b promoter. Blood 1992; 79: 865–870.

    CAS  PubMed  Google Scholar 

  30. Greaves DR, Quinn CM, Seldin MF, Gordon S . Functional comparison of the murine macrosialin and human CD68 promoters in macrophage and nonmacrophage cell lines. Genomics 1998; 54: 165–168.

    Article  CAS  PubMed  Google Scholar 

  31. Gordon S et al. Antigen markers of macrophage differentiation in murine tissues. Curr Top Microbiol Immunol 1992; 181: 1–37.

    CAS  PubMed  Google Scholar 

  32. Matz MV et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 1999; 17: 969–973.

    Article  CAS  PubMed  Google Scholar 

  33. Young HA, Hardy KJ . Role of interferon-gamma in immune cell regulation. J Leukot Biol 1995; 58: 373–381.

    Article  CAS  Google Scholar 

  34. During MJ et al. In vivo expression of therapeutic human genes for dopamine production in the caudates of MPTP-treated monkeys using an AAV vector. Gene Ther 1998; 5: 820–827.

    Article  CAS  PubMed  Google Scholar 

  35. Wrzesinski S et al. HTLV type 1 Tax transduction in microglial cells and astrocytes by lentiviral vectors. AIDS Res Hum Retroviruses 2000; 16: 1771–1776.

    Article  CAS  PubMed  Google Scholar 

  36. Mordelet E et al. Brain engraftment of autologous macrophages transduced with a lentiviral flap vector: an approach to complement brain dysfunctions. Gene Ther 2002; 9: 46–52.

    Article  CAS  PubMed  Google Scholar 

  37. Bartlett JS, Samulski RJ, McCown TJ . Selective and rapid uptake of adeno-associated virus type 2 in brain. Hum Gene Ther 1998; 9: 1181–1186.

    Article  CAS  PubMed  Google Scholar 

  38. Malik P et al. Retroviral-mediated gene expression in human myelomonocytic cells: a comparison of hematopoietic cell promoters to viral promoters. Blood 1995; 86: 2993–3005.

    CAS  PubMed  Google Scholar 

  39. Laukkanen J et al. Adenovirus-mediated gene transfer of a secreted form of human macrophage scavenger receptor inhibits modified low-density lipoprotein degradation and foam-cell formation in macrophages. Circulation 2000; 101: 1091–1096.

    Article  CAS  PubMed  Google Scholar 

  40. Lawson LJ, Perry VH, Gordon S . Turnover of resident microglia in the normal adult mouse brain. Neuroscience 1992; 48: 405–415.

    Article  CAS  PubMed  Google Scholar 

  41. Rezaie P, Patel K, Male DK . Microglia in the human fetal spinal cord – patterns of distribution, morphology and phenotype. Brain Res Dev Brain Res 1999; 115: 71–81.

    Article  CAS  PubMed  Google Scholar 

  42. Hutchins KD, Dickson DW, Rashbaum WK, Lyman WD . Localization of microglia in the human fetal cervical spinal cord. Brain Res Dev Brain Res 1992; 66: 270–273.

    Article  CAS  PubMed  Google Scholar 

  43. Back A, East K, Hickstein D . Leukocyte integrin CD11b promoter directs expression in lymphocytes and granulocytes in transgenic mice. Blood 1995; 85: 1017–1024.

    CAS  PubMed  Google Scholar 

  44. Dziennis S et al. The CD11b promoter directs high-level expression of reporter genes in macrophages in transgenic mice. Blood 1995; 85: 319–329.

    CAS  PubMed  Google Scholar 

  45. Early E et al. Transgenic expression of PML/RARalpha impairs myelopoiesis. Proc Natl Acad Sci U S A 1996; 93: 7900–7904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Davidson BL et al. Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci USA 2000; 97: 3428–3432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Girod A et al. Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2. Nat Med 1999; 5: 1052–1056.

    Article  CAS  PubMed  Google Scholar 

  48. Rabinowitz JE, Xiao W, Samulski RJ . Insertional mutagenesis of AAV2 capsid and the production of recombinant virus. Virology 1999; 265: 274–285.

    Article  CAS  PubMed  Google Scholar 

  49. Wu P et al. Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism. J Virol 2000; 74: 8635–8647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shi W, Arnold GS, Bartlett JS . Insertional mutagenesis of the adeno-associated virus type 2 (AAV2) capsid gene and generation of AAV2 vectors targeted to alternative cell-surface receptors. Hum Gene Ther 2001; 12: 1697–1711.

    Article  CAS  PubMed  Google Scholar 

  51. McCarthy KD, de Vellis J . Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 1980; 85: 890–902.

    Article  CAS  PubMed  Google Scholar 

  52. Cole R, de Vellis J . Preparation of astrocyte and oligodendrocyte cultures from primary rat glial cultures. In: Shahar A, de Vellis J, Vernadakis A, Haber B (eds). A Dissection and Tissue Culture Manual of the Nervous System. Liss AR: New York, 1989, pp 121–133.

    Google Scholar 

  53. Francis JW et al. Enhancement of diphtheria toxin potency by replacement of the receptor binding domain with tetanus toxin C-fragment: a potential vector for delivering heterologous proteins to neurons. J Neurochem 2000; 74: 2528–2536.

    Article  CAS  PubMed  Google Scholar 

  54. Isler P et al. Interleukin-12 production by human alveolar macrophages is controlled by the autocrine production of interleukin-10. Am J Respir Cell Mol Biol 1999; 20: 270–278.

    Article  CAS  PubMed  Google Scholar 

  55. Samulski RJ, Chang LS, Shenk T . A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J Virol 1987; 61: 3096–3101.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF . In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 1999; 285: 1569–1572.

    Article  CAS  PubMed  Google Scholar 

  57. Clark KR, Liu X, McGrath JP, Johnson PR . Highly purified recombinant adeno-associated virus vectors are biologically active and free of detectable helper and wild-type viruses. Hum Gene Ther 1999; 10: 1031–1039.

    Article  CAS  PubMed  Google Scholar 

  58. Carter BJ . The growth cycle of adeno-associated virus. In: Tijssen P (ed). Handbook of Parvoviruses, Vol. 1. CRC Press: Boca Raton, FL, 1990, pp 155–168.

    Google Scholar 

  59. Nguyen JT et al. Adeno-associated virus-mediated delivery of antiangiogenic factors as an antitumor strategy. Cancer Res 1998; 58: 5673–5677.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by an award to EF Terwilliger from the Pediatric AIDS Foundation and by NIH grant NS43986. We are grateful to RJ Samulski (The Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA) and JA Chiorini (Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA) for providing AAV precursor plasmids, DG Tenen (Hematology/Oncology Division, Harvard Institutes of Medicine, Boston, MA, USA) for the CD11b promoter element, D Greaves and A McKnight (Sir William Dunn School of Pathology, Oxford, UK) for the CD68 and F4/80 promoter sequences, J de Vellis and R Cole (UCLA Mental Retardation Research Center, Los Angeles, CA, USA) for primary microglia cultures, H Koziel (Pulmonary Laboratory, Beth Israel Deaconess Medical Center, Boston, MA, USA) for primary lung alveolar macrophage preparations, and JW Francis (Department of Neurology, Massachusetts General Hospital, Boston, MA, USA) for rat primary neuronal cultures. We also thank CJ Cahill and DA Brown (Joslin Diabetes Center and Beth Israel Deaconess Medical Center, Boston, MA, USA) for help with confocal imaging, V Petkova (Hematology/Oncology Division, Harvard Institutes of Medicine, Boston, MA, USA) for assistance with real-time PCR, H Madry (Laboratory of Experimental Orthopaedics, Department of Orthopaedic Surgery, Saarland University Medical Center) for helpful discussions, and J Delahanty for assistance with graphics preparation and editing.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cucchiarini, M., Ren, X., Perides, G. et al. Selective gene expression in brain microglia mediated via adeno-associated virus type 2 and type 5 vectors. Gene Ther 10, 657–667 (2003). https://doi.org/10.1038/sj.gt.3301925

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301925

Keywords

This article is cited by

Search

Quick links