Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Viral-based modelling and correction of neurodegenerative diseases by RNA interference

Abstract

Experimental recapitulation of recessive human genetic neurodegenerative disease in rodents can be classically addressed through genetic disruption of the related gene. Although very informative, this specific gene targeting is restricted to mice and precludes a species scale-up towards non-human primates. Concomitantly, this requirement to silence a specific gene in a broad range of animal models is important in the design of therapeutic approaches to dominantly inherited neurodegenerative diseases. The emergence of RNA interference (RNAi), a highly specific mechanism of post-translational gene silencing, has opened a plethora of biological application ranging from reverse genetic analysis to therapeutic schemes. Recombinant viral vectors, by promoting a long-lasting delivery of genetic instructions in a broad range of cellular types of different species origins, represent potential platforms mandating silencing of specific gene products through RNAi. This review aims at providing an overview of the different viral systems engineered so far for efficient in vitro and in vivo delivery of RNAi instructions. Additionally, the potential of RNAi for functional analysis and therapy for polyglutamine disorders or amyotrophic lateral sclerosis is discussed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Wong PC, Cai H, Borchelt DR, Price DL . Genetically engineered mouse models of neurodegenerative diseases. Nat Neurosci 2002; 5: 633–639.

    Article  CAS  PubMed  Google Scholar 

  2. Norgren Jr RB . Creation of non-human primate neurogenetic disease models by gene targeting and nuclear transfer. Reprod Biol Endocrinol 2004; 2: 40.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Deglon N, Hantraye P . Viral vectors as tools to model and treat neurodegenerative disorders. J Gene Med 2005; 7: 530–539.

    Article  CAS  PubMed  Google Scholar 

  4. Dykxhoorn DM, Novina CD, Sharp PA . Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 2003; 4: 457–467.

    Article  CAS  PubMed  Google Scholar 

  5. Hammond SM, Caudy AA, Hannon GJ . Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet 2001; 2: 110–119.

    Article  CAS  PubMed  Google Scholar 

  6. McManus MT, Sharp PA . Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 2002; 3: 737–747.

    Article  CAS  PubMed  Google Scholar 

  7. Meister G, Tuschl T . Mechanisms of gene silencing by double-stranded RNA. Nature 2004; 431: 343–349.

    Article  CAS  PubMed  Google Scholar 

  8. Aebischer P, Ridet J . Recombinant proteins for neurodegenerative diseases: the delivery issue. Trends Neurosci 2001; 24: 533–540.

    Article  CAS  PubMed  Google Scholar 

  9. Sasaki K, Inoue M, Shibata H, Ueda Y, Muramatsu SI, Okada T et al. Efficient and stable Sendai virus-mediated gene transfer into primate embryonic stem cells with pluripotency preserved. Gene Therapy 2005; 12: 203–210.

    Article  CAS  PubMed  Google Scholar 

  10. Sledz CA, Williams BR . RNA interference in biology and disease. Blood 2005; 106: 787–794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yi R, Doehle BP, Qin Y, Macara IG, Cullen BR . Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. RNA 2005; 11: 220–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yi R, Qin Y, Macara IG, Cullen BR . Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003; 17: 3011–3016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shen C, Buck AK, Liu X, Winkler M, Reske SN . Gene silencing by adenovirus-delivered siRNA. FEBS Lett 2003; 539: 111–114.

    Article  CAS  PubMed  Google Scholar 

  14. Arts GJ, Langemeijer E, Tissingh R, Ma L, Pavliska H, Dokic K et al. Adenoviral vectors expressing siRNAs for discovery and validation of gene function. Genome Res 2003; 13: 2325–2332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Uchida H, Tanaka T, Sasaki K, Kato K, Dehari H, Ito Y et al. Adenovirus-mediated transfer of siRNA against survivin induced apoptosis and attenuated tumor cell growth in vitro and in vivo. Mol Ther 2004; 10: 162–171.

    Article  CAS  PubMed  Google Scholar 

  16. Miyagishi M, Sumimoto H, Miyoshi H, Kawakami Y, Taira K . Optimization of an siRNA-expression system with an improved hairpin and its significant suppressive effects in mammalian cells. J Gene Med 2004; 6: 715–723.

    Article  CAS  PubMed  Google Scholar 

  17. Kawasaki H, Taira K . Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res 2003; 31: 700–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sumimoto H, Yamagata S, Shimizu A, Miyoshi H, Mizuguchi H, Hayakawa T et al. Gene therapy for human small-cell lung carcinoma by inactivation of Skp-2 with virally mediated RNA interference. Gene Therapy 2005; 12: 95–100.

    Article  CAS  PubMed  Google Scholar 

  19. Xia H, Mao Q, Paulson HL, Davidson BL . siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 2002; 20: 1006–1010.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao LJ, Jian H, Zhu H . Specific gene inhibition by adenovirus-mediated expression of small interfering RNA. Gene 2003; 316: 137–141.

    Article  CAS  PubMed  Google Scholar 

  21. Gou D, Narasaraju T, Chintagari NR, Jin N, Wang P, Liu L . Gene silencing in alveolar type II cells using cell-specific promoter in vitro and in vivo. Nucleic Acids Res 2004; 32: e134.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Morsy MA, Gu M, Motzel S, Zhao J, Lin J, Su Q et al. An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene. Proc Natl Acad Sci USA 1998; 95: 7866–7871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Glasgow JN, Bauerschmitz GJ, Curiel DT, Hemminki A . Transductional and transcriptional targeting of adenovirus for clinical applications. Curr Gene Ther 2004; 4: 1–14.

    Article  CAS  PubMed  Google Scholar 

  24. Pinkenburg O, Platz J, Beisswenger C, Vogelmeier C, Bals R . Inhibition of NF-kappaB mediated inflammation by siRNA expressed by recombinant adeno-associated virus. J Virol Methods 2004; 120: 119–122.

    Article  CAS  PubMed  Google Scholar 

  25. Boden D, Pusch O, Lee F, Tucker L, Ramratnam B . Efficient gene transfer of HIV-1-specific short hairpin RNA into human lymphocytic cells using recombinant adeno-associated virus vectors. Mol Ther 2004; 9: 396–402.

    Article  CAS  PubMed  Google Scholar 

  26. Boden D, Pusch O, Lee F, Tucker L, Shank PR, Ramratnam B . Promoter choice affects the potency of HIV-1 specific RNA interference. Nucleic Acids Res 2003; 31: 5033–5038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hommel JD, Sears RM, Georgescu D, Simmons DL, DiLeone RJ . Local gene knockdown in the brain using viral-mediated RNA interference. Nat Med 2003; 9: 1539–1544.

    Article  CAS  PubMed  Google Scholar 

  28. Michel U, Malik I, Ebert S, Bahr M, Kugler S . Long-term in vivo and in vitro AAV-2-mediated RNA interference in rat retinal ganglion cells and cultured primary neurons. Biochem Biophys Res Commun 2005; 326: 307–312.

    Article  CAS  PubMed  Google Scholar 

  29. Moore MD, McGarvey MJ, Russell RA, Cullen BR, McClure MO . Stable inhibition of hepatitis B virus proteins by small interfering RNA expressed from viral vectors. J Gene Med 2005; 7: 918–925.

    Article  CAS  PubMed  Google Scholar 

  30. Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 2004; 10: 816–820.

    CAS  PubMed  Google Scholar 

  31. Harper SQ, Staber PD, He X, Eliason SL, Martins IH, Mao Q et al. RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model. Proc Natl Acad Sci USA 2005; 102: 5820–5825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McCarty DM, Young Jr SM, Samulski RJ . Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet 2004; 38: 819–845.

    Article  CAS  PubMed  Google Scholar 

  33. Raoul C, Abbas-Terki T, Bensadoun JC, Guillot S, Haase G, Szulc J et al. Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med 2005; 11: 423–428.

    Article  CAS  PubMed  Google Scholar 

  34. Snyder RO, Flotte TR . Production of clinical-grade recombinant adeno-associated virus vectors. Curr Opin Biotechnol 2002; 13: 418–423.

    Article  CAS  PubMed  Google Scholar 

  35. Abbas-Terki T, Blanco-Bose W, Deglon N, Pralong W, Aebischer P . Lentiviral-mediated RNA interference. Hum Gene Ther 2002; 13: 2197–2201.

    Article  CAS  PubMed  Google Scholar 

  36. Nishitsuji H, Ikeda T, Miyoshi H, Ohashi T, Kannagi M, Masuda T . Expression of small hairpin RNA by lentivirus-based vector confers efficient and stable gene-suppression of HIV-1 on human cells including primary non-dividing cells. Microbes Infect 2004; 6: 76–85.

    Article  CAS  PubMed  Google Scholar 

  37. Van den Haute C, Eggermont K, Nuttin B, Debyser Z, Baekelandt V . Lentiviral vector-mediated delivery of short hairpin RNA results in persistent knockdown of gene expression in mouse brain. Hum Gene Ther 2003; 14: 1799–1807.

    Article  CAS  PubMed  Google Scholar 

  38. Mangeot PE, Cosset FL, Colas P, Mikaelian I . A universal transgene silencing method based on RNA interference. Nucleic Acids Res 2004; 32: e102.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tiscornia G, Singer O, Ikawa M, Verma IM . A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci USA 2003; 100: 1844–1848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wiznerowicz M, Trono D . Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 2003; 77: 8957–8961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 2003; 9: 493–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003; 33: 401–406.

    Article  CAS  PubMed  Google Scholar 

  43. An DS, Xie Y, Mao SH, Morizono K, Kung SK, Chen IS . Efficient lentiviral vectors for short hairpin RNA delivery into human cells. Hum Gene Ther 2003; 14: 1207–1212.

    Article  CAS  PubMed  Google Scholar 

  44. Ralph GS, Radcliffe PA, Day DM, Carthy JM, Leroux MA, Lee DC et al. Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med 2005; 11: 429–433.

    Article  CAS  PubMed  Google Scholar 

  45. Bushman F, Lewinski M, Ciuffi A, Barr S, Leipzig J, Hannenhalli S et al. Genome-wide analysis of retroviral DNA integration. Nat Rev Microbiol 2005; 3: 848–858.

    Article  CAS  PubMed  Google Scholar 

  46. Tan W, Zhu K, Segal DJ, Barbas III CF, Chow SA . Fusion proteins consisting of human immunodeficiency virus type 1 integrase and the designed polydactyl zinc finger protein E2C direct integration of viral DNA into specific sites. J Virol 2004; 78: 1301–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Saenz DT, Loewen N, Peretz M, Whitwam T, Barraza R, Howell KG et al. Unintegrated lentivirus DNA persistence and accessibility to expression in nondividing cells: analysis with class I integrase mutants. J Virol 2004; 78: 2906–2920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hosono T, Mizuguchi H, Katayama K, Xu ZL, Sakurai F, Ishii-Watabe A et al. Adenovirus vector-mediated doxycycline-inducible RNA interference. Hum Gene Ther 2004; 15: 813–819.

    Article  CAS  PubMed  Google Scholar 

  49. Ventura A, Meissner A, Dillon CP, McManus M, Sharp PA, Van Parijs L et al. Cre–lox-regulated conditional RNA interference from transgenes. Proc Natl Acad Sci USA 2004; 101: 10380–10385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chtarto A, Bender HU, Hanemann CO, Kemp T, Lehtonen E, Levivier M et al. Tetracycline-inducible transgene expression mediated by a single AAV vector. Gene Therapy 2003; 10: 84–94.

    Article  CAS  PubMed  Google Scholar 

  51. Koponen JK, Kankkonen H, Kannasto J, Wirth T, Hillen W, Bujard H et al. Doxycycline-regulated lentiviral vector system with a novel reverse transactivator rtTA2S-M2 shows a tight control of gene expression in vitro and in vivo. Gene Therapy 2003; 10: 459–466.

    Article  CAS  PubMed  Google Scholar 

  52. Regulier E, Pereira de Almeida L, Sommer B, Aebischer P, Deglon N . Dose-dependent neuroprotective effect of ciliary neurotrophic factor delivered via tetracycline-regulated lentiviral vectors in the quinolinic acid rat model of Huntington's disease. Hum Gene Ther 2002; 13: 1981–1990.

    Article  CAS  PubMed  Google Scholar 

  53. Vogel R, Amar L, Thi AD, Saillour P, Mallet J . A single lentivirus vector mediates doxycycline-regulated expression of transgenes in the brain. Hum Gene Ther 2004; 15: 157–165.

    Article  CAS  PubMed  Google Scholar 

  54. Corti O, Sanchez-Capelo A, Colin P, Hanoun N, Hamon M, Mallet J . Long-term doxycycline-controlled expression of human tyrosine hydroxylase after direct adenovirus-mediated gene transfer to a rat model of Parkinson's disease. Proc Natl Acad Sci USA 1999; 96: 12120–12125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jiang L, Rampalli S, George D, Press C, Bremer EG, O'Gorman MR et al. Tight regulation from a single tet-off rAAV vector as demonstrated by flow cytometry and quantitative, real-time PCR. Gene Therapy 2004; 11: 1057–1067.

    Article  CAS  PubMed  Google Scholar 

  56. Schols L, Bauer P, Schmidt T, Schulte T, Riess O . Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 2004; 3: 291–304.

    Article  PubMed  Google Scholar 

  57. Burright EN, Clark HB, Servadio A, Matilla T, Feddersen RM, Yunis WS et al. SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 1995; 82: 937–948.

    Article  CAS  PubMed  Google Scholar 

  58. Klement IA, Skinner PJ, Kaytor MD, Yi H, Hersch SM, Clark HB et al. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 1998; 95: 41–53.

    Article  CAS  PubMed  Google Scholar 

  59. Zu T, Duvick LA, Kaytor MD, Berlinger MS, Zoghbi HY, Clark HB et al. Recovery from polyglutamine-induced neurodegeneration in conditional SCA1 transgenic mice. J Neurosci 2004; 24: 8853–8861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Clark HB, Burright EN, Yunis WS, Larson S, Wilcox C, Hartman B et al. Purkinje cell expression of a mutant allele of SCA1 in transgenic mice leads to disparate effects on motor behaviors, followed by a progressive cerebellar dysfunction and histological alterations. J Neurosci 1997; 17: 7385–7395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schilling G, Becher MW, Sharp AH, Jinnah HA, Duan K, Kotzuk JA et al. Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet 1999; 8: 397–407.

    Article  CAS  PubMed  Google Scholar 

  62. Bruijn LI, Miller TM, Cleveland DW . Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 2004; 27: 723–749.

    Article  CAS  PubMed  Google Scholar 

  63. Cleveland DW, Rothstein JD . From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci 2001; 2: 806–819.

    Article  CAS  PubMed  Google Scholar 

  64. Miller TM, Kaspar BK, Kops GJ, Yamanaka K, Christian LJ, Gage FH et al. Virus-delivered small RNA silencing sustains strength in amyotrophic lateral sclerosis. Ann Neurol 2005; 57: 773–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Azzouz M, Mazarakis N . Non-primate EIAV-based lentiviral vectors as gene delivery system for motor neuron diseases. Curr Gene Ther 2004; 4: 277–286.

    Article  CAS  PubMed  Google Scholar 

  66. Xiao X, Li J, Samulski RJ . Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 1996; 70: 8098–8108.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kaspar BK, Llado J, Sherkat N, Rothstein JD, Gage FH . Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 2003; 301: 839–842.

    Article  CAS  PubMed  Google Scholar 

  68. Oka S, Honmou O, Akiyama Y, Sasaki M, Houkin K, Hashi K et al. Autologous transplantation of expanded neural precursor cells into the demyelinated monkey spinal cord. Brain Res 2004; 1030: 94–102.

    Article  CAS  PubMed  Google Scholar 

  69. Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science 2000; 290: 767–773.

    Article  CAS  PubMed  Google Scholar 

  70. Manno CS, Chew AJ, Hutchison S, Larson PJ, Herzog RW, Arruda VR et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 2003; 101: 2963–2972.

    Article  CAS  PubMed  Google Scholar 

  71. Deglon N, Aebischer P . Lentiviruses as vectors for CNS diseases. Curr Top Microbiol Immunol 2002; 261: 191–209.

    CAS  PubMed  Google Scholar 

  72. Muthane U, Ramsay KA, Jiang H, Jackson-Lewis V, Donaldson D, Fernando S et al. Differences in nigral neuron number and sensitivity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57/bl and CD-1 mice. Exp Neurol 1994; 126: 195–204.

    Article  CAS  PubMed  Google Scholar 

  73. Sahgal A, Andrews JS, Biggins JA, Candy JM, Edwardson JA, Keith AB et al. N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) affects locomotor activity without producing a nigrostriatal lesion in the rat. Neurosci Lett 1984; 48: 179–184.

    Article  CAS  PubMed  Google Scholar 

  74. Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ . A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 1983; 80: 4546–4550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zeitlin S, Liu JP, Chapman DL, Papaioannou VE, Efstratiadis A . Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. Nat Genet 1995; 11: 155–163.

    Article  CAS  PubMed  Google Scholar 

  76. Ding H, Schwarz DS, Keene A, Affar el B, Fenton L, Xia X et al. Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis. Aging Cell 2003; 2: 209–217.

    Article  CAS  PubMed  Google Scholar 

  77. Maxwell MM, Pasinelli P, Kazantsev AG, Brown Jr RH . RNA interference-mediated silencing of mutant superoxide dismutase rescues cyclosporin A-induced death in cultured neuroblastoma cells. Proc Natl Acad Sci USA 2004; 101: 3178–3183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Miller VM, Gouvion CM, Davidson BL, Paulson HL . Targeting Alzheimer's disease genes with RNA interference: an efficient strategy for silencing mutant alleles. Nucleic Acids Res 2004; 32: 661–668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Miller VM, Xia H, Marrs GL, Gouvion CM, Lee G, Davidson BL et al. Allele-specific silencing of dominant disease genes. Proc Natl Acad Sci USA 2003; 100: 7195–7200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Chris Towne for critical comments on the manuscript. We are grateful to Nicolas Bouche for art colour figures. Our work was supported by the Swiss National Science Foundation and the ALS association (ALSA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Aebischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raoul, C., Barker, S. & Aebischer, P. Viral-based modelling and correction of neurodegenerative diseases by RNA interference. Gene Ther 13, 487–495 (2006). https://doi.org/10.1038/sj.gt.3302690

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302690

Keywords

This article is cited by

Search

Quick links