Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Efficient gene transduction of neurons by lentivirus with enhanced neuron-specific promoters

Abstract

In the field of basic and clinical neurosciences, it is important to develop a method for easy delivery and persistent expression of transgene in central neurons. We firstly generated lentiviral vectors with five kinds of neuron-specific promoters, such as synapsin I (SYN), calcium/calmodulin-dependent protein kinase II, tubulin alpha I, neuron-specific enolase and platelet-derived growth factor beta chain promoters and then novel hybrid promoters by fusing cytomegalovirus enhancer (E) to those neuron-specific promoters. Neuron-specific expression of green fluorescent protein (GFP) with those promoters was examined in vivo by injecting the lentiviral vectors into the rat neostriatum, thalamus and neocortex. Among all the promoters, SYN promoter displayed the highest specificity for neuronal expression in all the regions examined (more than 96%). Although GFP production by the hybrid promoters was about 2–4 times larger than the non-enhanced promoters, the neuronal specificity was significantly decreased in most cases. However, the neuronal specificity of E/SYN hybrid promoter exhibited the least decrease only in the thalamus. Furthermore, the transcriptional activity and neuronal specificity of E/SYN promoter were sustained for up to 8 weeks. Thus, lentivirus with E/SYN promoter is the best vector for strong persistent expression in neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Davidson BL, Breakefield XO . Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci 2003; 4: 353–364.

    Article  CAS  Google Scholar 

  2. Callaway EM . A molecular and genetic arsenal for systems neuroscience. Trends Neurosci 2005; 28: 196–201.

    Article  CAS  PubMed  Google Scholar 

  3. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  Google Scholar 

  4. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM . Development of a self-inactivating lentivirus vector. J Virol 1998; 72: 8150–8157.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D . Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 1997; 15: 871–875.

    Article  CAS  PubMed  Google Scholar 

  6. Amendola M, Venneri MA, Biffi A, Vigna E, Naldini L . Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol 2005; 23: 108–116.

    Article  CAS  PubMed  Google Scholar 

  7. Cronin J, Zhang XY, Reiser J . Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 2005; 5: 387–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dittgen T, Nimmerjahn A, Komai S, Licznerski P, Waters J, Margrie TW et al. Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc Natl Acad Sci USA 2004; 101: 18206–18211.

    Article  CAS  PubMed  Google Scholar 

  9. Wells T, Carter DA . Genetic engineering of neural function in transgenic rodents: towards a comprehensive strategy? J Neurosci Methods 2001; 108: 111–130.

    Article  CAS  PubMed  Google Scholar 

  10. Li L, Suzuki T, Mori N, Greengard P . Identification of a functional silencer element involved in neuron-specific expression of the synapsin I gene. Proc Natl Acad Sci USA 1993; 90: 1460–1464.

    Article  CAS  PubMed  Google Scholar 

  11. Mayford M, Baranes D, Podsypanina K, Kandel ER . The 3′-untranslated region of CaMKII alpha is a cis-acting signal for the localization and translation of mRNA in dendrites. Proc Natl Acad Sci USA 1996; 93: 13250–13255.

    Article  CAS  PubMed  Google Scholar 

  12. Gloster A, Wu W, Speelman A, Weiss S, Causing C, Pozniak C et al. The T alpha 1 alpha-tubulin promoter specifies gene expression as a function of neuronal growth and regeneration in transgenic mice. J Neurosci 1994; 14: 7319–7330.

    Article  CAS  PubMed  Google Scholar 

  13. Forss-Petter S, Danielson PE, Catsicas S, Battenberg E, Price J, Nerenberg M et al. Transgenic mice expressing beta-galactosidase in mature neurons under neuron-specific enolase promoter control. Neuron 1990; 5: 187–197.

    Article  CAS  PubMed  Google Scholar 

  14. Sasahara M, Fries JW, Raines EW, Gown AM, Westrum LE, Frosch MP et al. PDGF B-chain in neurons of the central nervous system, posterior pituitary, and in a transgenic model. Cell 1991; 64: 217–227.

    Article  CAS  PubMed  Google Scholar 

  15. Alam J, Cook JL . Reporter genes: application to the study of mammalian gene transcription. Anal Biochem 1990; 188: 245–254.

    Article  CAS  PubMed  Google Scholar 

  16. Soboleski MR, Oaks J, Halford WP . Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells. FASEB J 2005; 19: 440–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mocarski ES . Cytomegaloviruses and their replication. In: Fields BN, Knipe DM, Howley PM (eds). Fields Virology. Lippincott-Raven: Philadelphia, PA, 1996, pp 2447–2492.

    Google Scholar 

  18. Niwa H, Yamamura K, Miyazaki J . Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 1991; 108: 193–199.

    Article  CAS  PubMed  Google Scholar 

  19. Wang CY, Guo HY, Lim TM, Ng YK, Neo HP, Hwang PY et al. Improved neuronal transgene expression from an AAV-2 vector with a hybrid CMV enhancer/PDGF-beta promoter. J Gene Med 2005; 7: 945–955.

    Article  CAS  PubMed  Google Scholar 

  20. Liu BH, Wang X, Ma YX, Wang S . CMV enhancer/human PDGF-beta promoter for neuron-specific transgene expression. Gene Therapy 2004; 11: 52–60.

    Article  PubMed  Google Scholar 

  21. Li Y, Yang Y, Wang S . Neuronal gene transfer by baculovirus-derived vectors accommodating a neurone-specific promoter. Exp Physiol 2005; 90: 39–44.

    Article  CAS  PubMed  Google Scholar 

  22. Wang CY, Wang S . Astrocytic expression of transgene in the rat brain mediated by baculovirus vectors containing an astrocyte-specific promoter. Gene Therapy 2006; 13: 1447–1456.

    Article  CAS  PubMed  Google Scholar 

  23. Wong LF, Goodhead L, Prat C, Mitrophanous KA, Kingsman SM, Mazarakis ND . Lentivirus-mediated gene transfer to the central nervous system: therapeutic and research applications. Hum Gene Ther 2006; 17: 1–9.

    Article  CAS  PubMed  Google Scholar 

  24. Kay MA, Glorioso JC, Naldini L . Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001; 7: 33–40.

    Article  CAS  PubMed  Google Scholar 

  25. Azzouz M, Kingsman SM, Mazarakis ND . Lentiviral vectors for treating and modeling human CNS disorders. J Gene Med 2004; 6: 951–962.

    Article  CAS  PubMed  Google Scholar 

  26. Maries E, Dass B, Collier TJ, Kordower JH, Steece-Collier K . The role of alpha-synuclein in Parkinson's disease: insights from animal models. Nat Rev Neurosci 2003; 4: 727–738.

    Article  CAS  PubMed  Google Scholar 

  27. Dauer W, Przedborski S . Parkinson's disease: mechanisms and models. Neuron 2003; 39: 889–909.

    Article  CAS  Google Scholar 

  28. Lo Bianco C, Ridet JL, Schneider BL, Deglon N, Aebischer P . alpha -Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson's disease. Proc Natl Acad Sci USA 2002; 99: 10813–10818.

    Article  CAS  PubMed  Google Scholar 

  29. Azzouz M, Martin-Rendon E, Barber RD, Mitrophanous KA, Carter EE, Rohll JB et al. Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson's disease. J Neurosci 2002; 22: 10302–10312.

    Article  CAS  PubMed  Google Scholar 

  30. Zufferey R, Donello JE, Trono D, Hope TJ . Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 1999; 73: 2886–2892.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tamamaki N, Nakamura K, Furuta T, Asamoto K, Kaneko T . Neurons in Golgi-stain-like images revealed by GFP-adenovirus infection in vivo. Neurosci Res 2000; 38: 231–236.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Grant-in-Aid for Scientific Research 18700341, 16200025, 17650100 and Grant-in-Aid for Scientific Research on Priority Areas System study on higher-order brain functions 17022020 from The Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Kaneko.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hioki, H., Kameda, H., Nakamura, H. et al. Efficient gene transduction of neurons by lentivirus with enhanced neuron-specific promoters. Gene Ther 14, 872–882 (2007). https://doi.org/10.1038/sj.gt.3302924

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302924

Keywords

This article is cited by

Search

Quick links