Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Immediate Communication
  • Published:

Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by β-amyloid fibrils

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder, which is probably caused by the cytotoxic effect of the amyloid β-peptide (Aβ). We report here molecular changes induced by Aβ, both in neuronal cells in culture and in rats injected in the dorsal hippocampus with preformed Aβ fibrils, as an in vivo model of the disease. Results indicate that in both systems, Aβ neurotoxicity resulted in the destabilization of endogenous levels of β-catenin, a key transducer of the Wnt signaling pathway. Lithium chloride, which mimics Wnt signaling by inhibiting glycogen synthase kinase-3β promoted the survival of post-mitotic neurons against Aβ neurotoxicity and recovered cytosolic β-catenin to control levels. Moreover, the neurotoxic effect of Aβ fibrils was also modulated with protein kinase C agonists/inhibitors and reversed with conditioned medium containing the Wnt-3a ligand. We also examined the spatial memory performance of rats injected with preformed Aβ fibrils in the Morris water maze paradigm, and found that chronic lithium treatment protected neurodegeneration by rescuing β-catenin levels and improved the deficit in spatial learning induced by Aβ. Our results are consistent with the idea that Aβ-dependent neurotoxicity induces a loss of function of Wnt signaling components and indicate that lithium or compounds that mimic this signaling cascade may be putative candidates for therapeutic intervention in Alzheimer's patients.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 4
Figure 3
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Selkoe DJ . The origins of Alzheimer disease: A is for amyloid. JAMA 2000; 283: 1615–1617.

    CAS  PubMed  Google Scholar 

  2. Mandelkow E-M, Mandelkow E . τ in Alzheimer's disease. Trends Cell Biol 1998; 8: 425–427.

    CAS  PubMed  Google Scholar 

  3. Busciglio J, Lorenzo A, Yeh J, Yankner BA . β-amyloid fibrils induce τ phosphorylation and loss of microtubule binding. Neuron 1995; 14: 879–888.

    CAS  PubMed  Google Scholar 

  4. Takashima A, Noguchi K, Sato K, Hoshino T, Imahori K . Tau protein kinase I is essential for amyloid β-protein-induced neurotoxicity. Proc Natl Acad Sci USA 1993; 90: 7789–7793.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Takashima A, Honda T, Yasutake K, Michel G, Murayama O, Murayama M et al. Activation of τ protein kinase I/glycogen synthase kinase-3β by amyloid β-peptide (25–35) enhances phosphorylation of τ in hippocampal neurons. Neurosci Res 1998; 31: 317–323.

    CAS  PubMed  Google Scholar 

  6. Siegfried E, Chou TB, Perrimon N . Wingless signaling acts through zeste-white 3, the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate. Cell 1992; 71: 1167–1179.

    CAS  PubMed  Google Scholar 

  7. Cook D, Fry MJ, Hughes K, Sumathipala R, Woodget JR, Dale TC . Wingless inactivates glycogen synthase kinase-3 via an intracellular signaling which involves a protein kinase C. EMBO J 1996; 15: 4526–4536.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen RH, Ding WV, McCormick F . Wnt signaling to β-catenin involves two interactive components. Glycogen synthase kinase-3β inhibition and activation of protein kinase C. J Biol Chem 2000; 275: 17 894–17 899.

    Google Scholar 

  9. Wodarz A, Nusse R . Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 1998; 14: 59–88.

    CAS  PubMed  Google Scholar 

  10. Kuhl M, Sheldahl LC, Park M, Miller JL, Moon RT . The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 2000; 16: 279–283.

    CAS  PubMed  Google Scholar 

  11. Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT . The axis-inducing activity, stability, and subcellular distribution of β-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 1996; 10: 1443–1454.

    CAS  PubMed  Google Scholar 

  12. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R . β-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 1997; 16: 3797–3804.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nusse R, Varmus HE . Wnt genes. Cell 1992; 69: 1073–1087.

    CAS  PubMed  Google Scholar 

  14. Polakis P . Wnt signaling and cancer. Genes Dev 2000; 14: 1837–1851.

    CAS  PubMed  Google Scholar 

  15. Wassink TH, Piven J, Vieland VJ, Huang J, Swiderski E, Pietila J et al. Evidence supporting WNT2 as an autism susceptibility gene. Am J Med Genet 2001; 105: 406–413.

    CAS  PubMed  Google Scholar 

  16. Andres C . Molecular genetics and animal models in autistic disorder. Brain Res Bull 2002; 57: 109–119.

    CAS  PubMed  Google Scholar 

  17. Cotter D, Kerwin R, al-Sarraji S, Brion JP, Chadwich A, Lovestone S et al. Abnormalities of Wnt signalling in schizophrenia—evidence for neurodevelopmental abnormality. Neuroreport 1998; 9: 1379–1383.

    CAS  PubMed  Google Scholar 

  18. Miyaoka T, Seno T, Ishino H . Increased expression of Wnt-1 in schizophrenic brains. Schizophr Res 1999; 38: 1–6.

    CAS  PubMed  Google Scholar 

  19. De Ferrari GV, Inestrosa NC . Wnt signaling function in Alzheimer's disease. Brain Res Brain Res Rev 2000; 33: 1–12.

    CAS  PubMed  Google Scholar 

  20. Anderton BH, Dayanandan R, Killick R, Lovestone S . Does dysregulation of the Notch and wingless/Wnt pathways underlie the pathogenesis of Alzheimer's disease? Mol Med Today 2000; 6: 54–59.

    CAS  PubMed  Google Scholar 

  21. Zhou J, Liyanage U, Medina M, Ho C, Simmons AD, Lovett M et al. Presenilin 1 interaction in the brain with a novel member of the Armadillo family. NeuroReport 1997; 8: 2085–2090.

    CAS  PubMed  Google Scholar 

  22. Yu G, Chen F, Levesque G, Nishimura M, Zhang DM, Levesque L et al. The presenilin 1 protein is a component of a high molecular weight intracellular complex that contains β-catenin. J Biol Chem 1998; 273: 16 470–16 475.

    Google Scholar 

  23. Tesco G, Kim TW, Diehlmann A, Beyreuther K, Tanzi RE . Abrogation of the presenilin 1/β-catenin interaction and preservation of the heterodimeric presenilin 1 complex following caspase activation. J Biol Chem 1998; 273: 33 909–33 914.

    Google Scholar 

  24. Zhang Z, Hartmann H, Do VM, Abramowski D, Sturchler-Pierrat C, Staufenbiel M et al. Destabilization of β-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature 1998; 395: 698–702.

    CAS  PubMed  Google Scholar 

  25. Nishimura M, Yu G, Levesque G, Zhang DM, Ruel L, Chen F et al. Presenilin mutations associated with Alzheimer disease cause defective intracellular trafficking of β-catenin, a component of the presenilin protein. Nat Med 1999; 5: 164–169.

    CAS  PubMed  Google Scholar 

  26. Kawamura Y, Kikuchi A, Takada R, Takada S, Sudoh S, Shibamoto S et al. Inhibitory effect of a presenilin 1 mutation on the Wnt signalling pathway by enhancement of β-catenin phosphorylation. Eur J Biochem 2001; 268: 3036–3041.

    CAS  PubMed  Google Scholar 

  27. Takashima A, Murayama M, Murayama O, Kohno T, Honda T, Yasutake K et al. Presenilin 1 associates with glycogen synthase kinase-3β and its substrate τ. Proc Natl Acad Sci USA 1998; 95: 9637–9641.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kang DE, Soriano S, Frosch MP, Collins T, Naruse S, Sisodia SS et al. Presenilin 1 facilitates the constitutive turnover of β-catenin: differential activity of Alzheimer's disease-linked PS1 mutants in the β-catenin-signaling pathway. J Neurosci 1999; 19: 4229–4237.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tesco G, Tanzi RE . GSK3β forms a tetrameric complex with endogenous PS1-CTF/NTF and β-catenin. Effects of the D257/D385A and FAD-linked mutations. Ann NY Acad Sci 2000; 920: 227–232.

    CAS  PubMed  Google Scholar 

  30. Gantier R, Gilbert D, Dumanchin C, Campion D, Davoust D, Toma F et al. The pathogenic L392V mutation of presenilin 1 decreases the affinity to glycogen synthase kinase-3β. Neurosci Lett 2000; 283: 217–220.

    CAS  PubMed  Google Scholar 

  31. Klein PS, Melton DA . A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 1996; 93: 8455–8459.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Stambolic V, Ruel L, Woodgett JR . Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 1996; 6: 1664–1668.

    CAS  PubMed  Google Scholar 

  33. Sheldahl LC, Park M, Malbon CC, Moon RT . Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Curr Biol 1999; 9: 695–698.

    CAS  PubMed  Google Scholar 

  34. Inestrosa NC, Alvarez A, Godoy J, Reyes A, De Ferrari GV . Acetylcholinesterase-amyloid–β-peptide interaction and Wnt signaling involvement in Aβ neurotoxicity. Acta Neurol Scand Suppl 2000; 176: 53–59.

    CAS  PubMed  Google Scholar 

  35. Alvarez A, Alarcón R, Opazo C, Campos EO, Muñoz FJ, Calderón FH et al. Stable complexes involving acetylcholinesterase and amyloid-β peptide change the biochemical properties of the enzyme and increase the neurotoxicity of Alzheimer's fibrils. J Neurosci 1998; 18: 3213–3223.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Banker GA, Cowan WM . Rat hippocampal neurons in dispersed cell culture. Brain Res 1977; 126: 397–442.

    CAS  PubMed  Google Scholar 

  37. Calderón FH, von Bernhardi R, De Ferrari GV, Luza S, Aldunate R, Inestrosa NC . Toxic effects of acetylcholinesterase on neuronal and glial-like cells in vitro. Mol Psychiatry 1998; 3: 247–255.

    PubMed  Google Scholar 

  38. Ding VW, Chen RH, McCormick F . Differential regulation of glycogen synthase kinase 3β by insulin and Wnt signaling. J Biol Chem 2000; 275: 32 475–32 481.

    Google Scholar 

  39. García-Huidobro T, Valenzuela E, Leisewitz AV, Valderrama J, Bronfman M . Anti-proliferative effect of two novel palmitoyl-carnitine analogs selective inhibitors of protein kinase C conventional isoenzymes. Eur J Biochem 1999; 266: 855–864.

    PubMed  Google Scholar 

  40. Morris R . Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Meth 1984; 11: 47–60.

    Article  CAS  Google Scholar 

  41. Côté SL, Ribeiro-Da-Silva A, Cuello AC . In: Cuello AC (ed). Immunocytochemistry II. John Wiley & Sons Ltd.: UK, 1993.

    Google Scholar 

  42. Goode N, Hughes K, Woodgett JR, Parker PJ . Differential regulation of glycogen synthase kinase-3β by protein kinase C isotypes. J Biol Chem 1992; 267: 16 878–16 882.

    Google Scholar 

  43. Sutherland C, Leighton IA, Cohen P . Inactivation of glycogen synthase kinase-3β by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem J 1993; 296: 15–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Patapoutian A, Reichardt LF . Roles of Wnt proteins in neural development and maintenance. Curr Opin Neurobiol 2000; 10: 392–399.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lako M, Lindsay S, Bullen P, Wilson DI, Robson SC, Strachan T . A novel mammalian wnt gene WNT8B shows brain-restricted expression in early development, with sharply delimited expression boundaries in the developing forebrain. Hum Mol Genet 1998; 7: 813–822.

    CAS  PubMed  Google Scholar 

  46. Lee SM, Tole S, Grove E, McMahon AP . A local Wnt-3a signal is required for development of the mammalian hippocampus. Development 2000; 127: 457–467.

    CAS  PubMed  Google Scholar 

  47. O'Hare E, Weldon DT, Mantyh PW, Ghilardi JR, Finke MP, Kuskowski MA et al. Delayed behavioral effects following intrahippocampal injection of aggregated Aβ (1–42). Brain Res 1999; 815: 1–10.

    CAS  PubMed  Google Scholar 

  48. Chambers CB, Sigurdsson EM, Hejna MJ, Lorens SA, Lee JM, Muma NA . Amyloid-β injection in rat amygdala alters τ protein but not mRNA expression. Exp Neurol 2000; 162: 158–170.

    CAS  PubMed  Google Scholar 

  49. Pascual T, González JL . A protective effect of lithium on rat behaviour altered by ibotenic acid lesions of the basal forebrain cholinergic system. Brain Res 1995; 695: 289–292.

    CAS  PubMed  Google Scholar 

  50. Yamada K, Tanaka T, Han D, Senzaki K, Kameyama T, Nabeshima T . Protective effects of idebenone and α-tocopherol on β-amyloid-(1–42)-induced learning and memory deficits in rats: implication of oxidative stress in β-amyloid-induced neurotoxicity in vivo. Eur J Neurosci 1999; 11: 83–90.

    CAS  PubMed  Google Scholar 

  51. Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD et al. Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature 2000; 408: 979–982.

    CAS  PubMed  Google Scholar 

  52. Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J et al. Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature 2000; 408: 982–985.

    CAS  PubMed  Google Scholar 

  53. Lovestone S, Reynolds CH, Latimer D, Davis DR, Anderton BH, Gallo JM et al. Alzheimer's disease-like phosphorylation of the microtubule-associated protein τ by glycogen synthase kinase-3 in transfected mammalian cells. Curr Biol 1994; 4: 1077–1086.

    CAS  PubMed  Google Scholar 

  54. Sperber BR, Leight S, Goedert M, Lee VM . Glycogen synthase kinase-3β phosphorylates τ protein at multiple sites in intact cells. Neurosci Lett 1995; 197: 149–153.

    CAS  PubMed  Google Scholar 

  55. Zheng-Fischhofer Q, Biernat J, Mandelkow EM, Illenberger S, Godemann R, Mandelkow E . Sequential phosphorylation of Tau by glycogen synthase kinase-3β and protein kinase A at Thr212 and Ser214 generates the Alzheimer-specific epitope of antibody AT100 and requires a paired-helical-filament-like conformation. Eur J Biochem 1998; 252: 542–552.

    CAS  PubMed  Google Scholar 

  56. Lucas FR, Goold RG, Gordon-Weeks PR, Salinas PC . Inhibition of GSK-3β leading to the loss of phosphorylated MAP-1B is an early event in axonal remodelling induced by WNT-7a or lithium. J Cell Sci 1998; 111: 1351–1361.

    CAS  PubMed  Google Scholar 

  57. Pei JJ, Braak E, Braak H, Grundke-Iqbal I, Iqbal K, Winblad B et al. Distribution of active glycogen synthase kinase 3β (GSK-3β) in brains staged for Alzheimer disease neurofibrillary changes. J Neuropathol Exp Neurol 1999; 58: 1010–1019.

    CAS  PubMed  Google Scholar 

  58. Alvarez G, Muñoz-Montano JL, Satrústegui J, Avila J, Bogoñez E, Diaz-Nido J . Lithium protects cultured neurons against β-amyloid-induced neurodegeneration. FEBS Lett 1999; 453: 260–264.

    CAS  PubMed  Google Scholar 

  59. Wei H, Leeds PR, Qian Y, Wei W, Chen R, Chuang D . β-amyloid peptide-induced death of PC12 cells and cerebellar granule cell neurons is inhibited by long-term lithium treatment. Eur J Pharmacol 2000; 392: 117–123.

    CAS  PubMed  Google Scholar 

  60. Nonaka S, Chuang DM . Neuroprotective effects of chronic lithium on focal cerebral ischemia in rats. NeuroReport 1998; 9: 2081–2084.

    CAS  PubMed  Google Scholar 

  61. Chen G, Rajkowska G, Du F, Seraji-Bozorgzad N, Manji HK . Enhancement of hippocampal neurogenesis by lithium. J Neurochem 2000; 75: 1729–1734.

    CAS  PubMed  Google Scholar 

  62. Muñoz-Montano JR, Moreno FJ, Avila J, Diaz-Nido J . Lithium inhibits Alzheimer's disease-like τ protein phosphorylation in neurons. FEBS Lett 1997; 411: 183–188.

    PubMed  Google Scholar 

  63. Hong M, Chen DCR, Klein PS, Lee VM-Y . Lithium reduces τ phosphorylation by inhibition of glycogen synthase kinase-3. J Biol Chem 1997; 272: 25 326–25 332.

    Google Scholar 

  64. Lovestone S, Davis DR, Webster MT, Kaech S, Brion JP, Matus A et al. Lithium reduces τ phosphorylation: effects in living cells and in neurons at therapeutic concentrations. Biol Psychiatry 1999; 45: 995–1003.

    CAS  PubMed  Google Scholar 

  65. Berridge MJ . Cell signalling. A tale of two messengers. Nature 1993; 365: 456–459.

    Google Scholar 

  66. Acharya JK, Labarca P, Delgado R, Jalink K, Zuker CS . Synaptic defects and compensatory regulation of inositol metabolism in inositol polyphosphate 1-phosphatase mutants. Neuron 1998; 20: 1219–1229.

    CAS  PubMed  Google Scholar 

  67. Chen R, Chuang D . Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity. J Biol Chem 1999; 274: 6039–6042.

    CAS  PubMed  Google Scholar 

  68. Lucas JJ, Hernandez F, Gomez-Ramos P, Moran MA, Hen R, Avila J . Decreased nuclear β-catenin τ hyperphosphorylation and neurodegeneration in GSK-3β conditional transgenic mice. EMBO J 2001; 20: 27–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Cole G, Dobkins KR, Hansen LA, Terry RD, Saitoh T . Decreased levels of protein kinase C in Alzheimer brain. Brain Res 1988; 452: 165–174.

    CAS  PubMed  Google Scholar 

  70. Shimohama S, Narita M, Matsushima H, Kimura J, Kameyama M, Hagiwara M et al. Assessment of protein kinase C isozymes by two-site enzyme immunoassay in human brains and changes in Alzheimer's disease. Neurology 1993; 43: 1407–1413.

    CAS  PubMed  Google Scholar 

  71. Govoni S, Bergamaschi S, Racchi M, Battaini F, Binetti G, Bianchetti A et al. Cytosol protein kinase C down regulation in fibroblasts from Alzheimer's disease patients. Neurology 1993; 43: 2581–2586.

    CAS  PubMed  Google Scholar 

  72. Van Huynh T, Cole G, Katzman R, Huang KP, Saitoh T . Reduced protein kinase C immunoreactivity and altered protein phosphorylation in Alzheimer's disease fibroblasts. Arch Neurol 1989; 46: 1195–1199.

    CAS  PubMed  Google Scholar 

  73. Hung AY, Haass C, Nitsch RM, Qiu WQ, Citron M, Wurtman RJ et al. Activation of protein kinase C inhibits cellular production of the amyloid β-protein. J Biol Chem 1993; 268: 22 959–22 962.

    Google Scholar 

  74. Gabuzda D, Busciglio J, Yankner BA . Inhibition of β-amyloid production by activation of protein kinase C. J Neurochem 1993; 61: 2326–2329.

    CAS  PubMed  Google Scholar 

  75. Favit A, Grimaldi M, Nelson TJ, Alkon DL . Alzheimer's-specific effects of soluble β-amyloid on protein kinase C-α and -γ degradation in human fibroblasts. Proc Natl Acad Sci USA 1998; 95: 5562–5567.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Xie J, Guo Q, Zhu H, Wooten MW, Mattson MP . Protein kinase C iota protects neural cells against apoptosis induced by amyloid β-peptide. Brain Res Mol Brain Res 2000; 82: 107–113.

    CAS  PubMed  Google Scholar 

  77. Ma W, Zheng WH, Belanger S, Kar S, Quirion R . Effects of amyloid peptides on cell viability and expression of neuropeptides in cultured rat dorsal root ganglion neurons: a role for free radicals and protein kinase C. Eur J Neurosci 2001; 13: 1125–1135.

    CAS  PubMed  Google Scholar 

  78. Chang JT, Esumi N, Moore K, Li Y, Zhang S, Chew C et al. Cloning and characterization of a secreted frizzled-related protein that is expressed by the retinal pigment epithelium. Hum Mol Genet 1999; 8: 575–583.

    CAS  PubMed  Google Scholar 

  79. Bertram L, Blacker D, Mullin K, Keeney D, Jones J, Basu S et al. Evidence for genetic linkage of Alzheimer's disease to chromosome 10q. Science 2000; 290: 2302–2303.

    CAS  PubMed  Google Scholar 

  80. Arheden K, Mandahl N, Strombeck B, Isaksson M, Mitelman F . Chromosome localization of the human oncogene INT1 to 12q13 by in situ hybridization. Cytogenet Cell Genet 1988; 47: 86–87.

    CAS  PubMed  Google Scholar 

  81. Bui TD, Rankin J, Smith K, Huguet EL, Ruben S, Strachan T et al. A novel human Wnt gene, WNT10B, maps to 12q13 and is expressed in human breast carcinomas. Oncogene 1997; 13: 1249–1253.

    Google Scholar 

  82. Pericak-Vance MA, Bass MP, Yamaoka LH, Gaskell PC, Scott WK, Terwedow HA et al. Complete genomic screen in late-onset familial Alzheimer disease. Evidence for a new locus on chromosome 12. JAMA 1997; 278: 1237–1241.

    CAS  PubMed  Google Scholar 

  83. Rogaeva E, Premkumar S, Song Y, Sorbi S, Brindle N, Paterson A et al. Evidence for an Alzheimer disease susceptibility locus on chromosome 12 and for further locus heterogeneity. JAMA 1998; 280: 614–618.

    CAS  PubMed  Google Scholar 

  84. Brown SD, Twells RC, Hey PJ, Cox RD, Levy ER, Soderman AR et al. Isolation and characterization of LRP6, a novel member of the low density lipoprotein receptor gene family. Biochem Biophys Res Commun 1998; 248: 879–888.

    CAS  PubMed  Google Scholar 

  85. Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y et al. LDL-receptor-related proteins in Wnt signal transduction. Nature 2000; 407: 530–535.

    CAS  PubMed  Google Scholar 

  86. Mayeux R, Lee JH, Romas SN, Mayo D, Santana V, Williamson J et al. Chromosome-12 mapping of late-onset Alzheimer disease among Caribbean Hispanics. Am J Hum Genet 2002; 70: 237–243.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr FJ Muñoz and S Lienlaff for helping us in the early stages of this project. This work was supported by grants FONDAP Biomedicine No. 13980001 and Millenium Institute for Fundamental and Applied Biology (MIFAB) No. P 99-007-F. NCI and MB are recipients of a Presidential Chair in Science from the Chilean government. NCI is a John Simon Guggenheim Memorial Foundation Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N C Inestrosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Ferrari, G., Chacón, M., Barría, M. et al. Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by β-amyloid fibrils. Mol Psychiatry 8, 195–208 (2003). https://doi.org/10.1038/sj.mp.4001208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001208

Keywords

This article is cited by

Search

Quick links