Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Abnormalities of myelination in schizophrenia detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins

Abstract

Schizophrenia unfolds during the late period of brain maturation, while myelination is still continuing. In the present study, we used MRI and T2 relaxation analysis to measure the myelin water fraction in schizophrenia. In schizophrenia (n=30) compared with healthy subjects (n=27), overall white matter showed 12% lower myelin water fraction (P=0.031), with the most prominent effects on the left genu of the corpus callosum (36% lower, P=0.002). The left anterior genu was affected in both first-episode (P=0.035) and chronic patients (P=0.011). In healthy subjects, myelin water fraction in total white matter and in frontal white matter increased with age, and with years of education, indicating ongoing maturation. In patients with schizophrenia, neither relation was statistically significant. Post-mortem studies of anterior frontal cortex demonstrated less immunoreactivity of two oligodendrocyte-associated proteins in schizophrenia (2′,3′-cyclic nucleotide 3′-phosphodiesterase by 33%, P=0.05; myelin-associated glycoprotein by 27%, P=0.14). Impaired myelination in schizophrenia could contribute to abnormalities of neural connectivity and persistent functional impairment in the illness.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R . Increased dopamine transmission in schizophrenia: relationship to illness phase. Biol Psychiatry 1999; 46: 56–72.

    Article  CAS  Google Scholar 

  2. Yakovlev PI, Lecours AR . The myelogenetic cycles of regional maturation of the brain. In: Minkowski, A (ed). Regional Development of the Brain in Early Life Blackwell: Oxford, 1967, pp 3–70.

    Google Scholar 

  3. Benes FM, Turtle M, Khan Y, Farol P . Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch Gen Psychiatry 1994; 51: 477–484.

    Article  CAS  Google Scholar 

  4. Paus T, Collins DL, Evans AC, Leonard G, Pike B, Zijdenbos A . Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull 2001; 54: 255–266.

    Article  CAS  Google Scholar 

  5. Paus T, Zijdenbos A, Worsley K, Collins DL, Blumenthal J, Giedd JN et al. Structural maturation of neural pathways in children and adolescents: in vivo study. Science 1999; 283: 1908–1911.

    Article  CAS  Google Scholar 

  6. Thompson PM, Giedd JN, Woods RW, MacDonald D, Evans AC, Toga AW . Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature 2000; 404: 190–193.

    Article  CAS  Google Scholar 

  7. Kopala LC, Tan S, Shea C, Orlik H, Vandorpe R, Honer WG . Adrenoleukodystrophy associated with psychosis. Schizophr Res 2000; 45: 263–265.

    CAS  PubMed  Google Scholar 

  8. Hyde TM, Ziegler JC, Weinberger DR . Psychiatric disturbances in metachromatic leukodystrophy: insights into the neurobiology of psychosis. Arch Neurol 1992; 49: 401–406.

    Article  CAS  Google Scholar 

  9. Feinstein A, du Boulay G, Ron MA . Psychotic illness in multiple sclerosis: a clinical and magnetic resonance imaging study. Br J Psychiatry 1992; 161: 680–685.

    Article  CAS  Google Scholar 

  10. Andreasen NC, Arndt S, Swayze V, Cizadlo T, Flaum M, O'Leary D et al. Thalamic abnormalities in schizophrenia visualized through magnetic resonance image averaging. Science 1994; 266: 294–298.

    Article  CAS  Google Scholar 

  11. Wolkin A, Rusinek H, Vaid G, Arena L, Lafargue T, Sanfilipo M et al. Structural magnetic resonance image averaging in schizophrenia. Am J Psychiatry 1998; 155: 1064–1073.

    Article  CAS  Google Scholar 

  12. Sigmundsson T, Suckling J, Maier M, Williams SCR, Bullmore ET, Greenwood KE et al. Structural abnormalities in frontal, temporal, and limbic regions and interconnecting white matter tracts in schizophrenic patients with prominent negative symptoms. Am J Psychiatry 2001; 158: 234–243.

    Article  CAS  Google Scholar 

  13. Foong J, Symms MR, Barker GJ, Maier M, Woermann FG, Miller DH et al. Neuropathological abnormalities in schizophrenia: evidence from magnetization transfer imaging. Brain 2001; 124: 882–892.

    Article  CAS  Google Scholar 

  14. Kubicki M, Westin C-F, Maier SE, Frumin M, Nestor PG, Salisbury DF et al. Uncinate fasciculus findings in schizophrenia: a magnetic resonance diffusion tensor imaging study. Am J Psychiatry 2002; 159: 813–820.

    Article  Google Scholar 

  15. Lim KO, Hedehus M, Moseley M, de Crespigny A, Sullivan EV, Pfefferbaum A . Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging. Arch Gen Psychiatry 1999; 56: 367–374.

    Article  CAS  Google Scholar 

  16. Agartz I, Andersson JLR, Skare S . Abnormal brain white matter in schizophrenia: a diffusion tensor imaging study. NeuroReport 2001; 12: 2251–2254.

    Article  CAS  Google Scholar 

  17. Buchsbaum MS, Tang CY, Peled S, Gudbjartsson H, Lu D, Hazlett EA et al. MRI white matter diffusion anisotropy and PET metabolic rate in schizophrenia. NeuroReport 1998; 9: 425–430.

    Article  CAS  Google Scholar 

  18. Williamson P, Pelz D, Merskey H, Morrison S, Conlon P . Correlation of negative symptoms in schizophrenia with frontal lobe parameters on magnetic resonance imaging. Br J Psychiatry 1991; 159: 130–134.

    Article  CAS  Google Scholar 

  19. Williamson P, Pelz D, Merskey H, Morrison S, Karlik S, Drost D et al. Frontal, temporal, and striatal proton relaxation times in schizophrenic patients and normal comparison subjects. Am J Psychiatry 1992; 149: 549–551.

    Article  CAS  Google Scholar 

  20. Supprian T, Hofmann E, Warmuth-Metz M, Franzek E, Becker T . MRI T2 relaxation times of brain regions in schizophrenic patients and control subjects. Psychiatry Res: Neuroimaging 1997; 75: 173–182.

    Article  CAS  Google Scholar 

  21. Pfefferbaum A, Sullivan EV, Hedehus M, Moseley M, Lim KO . Brain gray and white matter transverse relaxation time in schizophrenia. Psychiatry Res: Neuroimaging 1999; 91: 93–100.

    Article  CAS  Google Scholar 

  22. Maier N, Ron MA . Hippocampal age-related changes in schizophrenia: a proton magnetic resonance spectroscopy study. Schizophr Res 1996; 22: 5–17.

    Article  CAS  Google Scholar 

  23. Auer DP, Wilke M, Grabner A, Heidenreich JO, Bronisch T, Wetter TC . Reduced NAA in the thalamus and altered membrane and glial metabolism in schizophrenic patients detected by 1H-MRS and tissue segmentation. Schizophr Res 2001; 52: 87–99.

    Article  CAS  Google Scholar 

  24. Lim KO, Adalsteinsson E, Spielman D, Sullivan EV, Rosenbloom MJ, Pfefferbaum A . Proton magnetic resonance spectroscopic imaging of cortical gray and white matter in schizophrenia. Arch Gen Psychiatry 1998; 55: 346–352.

    Article  CAS  Google Scholar 

  25. MacKay A, Whittall K, Adler J, Li D, Paty D, Graeb D . In vivo visualization of myelin water in brain by magnetic resonance. Magn Reson Med 1994; 31: 673–677.

    Article  CAS  Google Scholar 

  26. Whittall KP, MacKay AL, Graeb DA, Nugent RA, Li DKB, Paty DW . In vivo measurement of T 2 distributions and water contents in normal human brain. Magn Reson Med 1997; 37: 34–43.

    Article  CAS  Google Scholar 

  27. Vavasour I, Whittall KP, MacKay AL, Li DKB, Vorobeychik G, Paty DW . A comparison between magnetization transfer ratio and myelin water percentage in normals and multiple sclerosis patients. Magn Reson Med 1998; 40: 763–768.

    Article  CAS  Google Scholar 

  28. Miyakawa T, Sumiyoshi S, Deshimaru M, Suzuki T, Tomonari H, Yasuoka F et al. Electron microscopic study on schizophrenia: mechanisms of pathological changes. Acta Neuropathol 1972; 20: 67–77.

    Article  CAS  Google Scholar 

  29. Ong WY, Garey LJ . Ultrastructural features of biopsied temporopolar cortex (area 38) in a case of schizophrenia. Schizophr Res 1993; 10: 15–27.

    Article  CAS  Google Scholar 

  30. Uranova N, Orlovskaya D, Vikhreva O, Zimina I, Kolomeets N, Vostrikov V et al. Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 2001; 55: 597–610.

    Article  CAS  Google Scholar 

  31. Honer WG, Falkai P, Chen C, Arango V, Mann JJ, Dwork AJ . Synaptic and plasticity associated proteins in anterior frontal cortex in severe mental illness. Neuroscience 1999; 91: 1247–1255.

    Article  CAS  Google Scholar 

  32. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Nat Acad Sci USA 2001; 98: 4746–4751.

    Article  CAS  Google Scholar 

  33. Baumann N, Pham-Dinh D . Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 2001; 81: 871–927.

    Article  CAS  Google Scholar 

  34. Sprinkle TJ . 2′,3′-Cyclic nucleotide 3′-phosphodiesterase, an oligodendrocyte-Schwann cell and myelin-associated enzyme of the nervous system. CRC Crit Rev Neurobiol 1989; 4: 235–283.

    CAS  Google Scholar 

  35. Bifulco M, Laezza C, Stingo S, Wolff J . 2′,3′-cyclic nucleotide 3′-phosphodiesterase: A membrane-bound microtubule-associated protein and membrane anchor for tubulin. Proc Nat Acad Sci USA 2002; 99: 1807–1812.

    Article  CAS  Google Scholar 

  36. Moore GRW, Leung E, MacKay AL, Vavasour IM, Cover KS, Li DKB et al. A pathology–MRI study of the short T2 component in formalin-fixed multiple sclerosis brain. Neurology 2000; 55: 1506–1510.

    Article  CAS  Google Scholar 

  37. Whittall KP, MacKay AL . Quantitative interpretation of NMR relaxation data. J Magn Reson 1989; 84: 134–152.

    CAS  Google Scholar 

  38. Witelson SF . Hand and sex differences in the isthmus and genu of the human corpus callosum: a postmortem morphological study. Brain 1989; 112: 799–835.

    Article  Google Scholar 

  39. Honer WG, Falkai P, Bayer TA, Xie J, Hu L, Li H-Y et al. Abnormalities of SNARE mechanism proteins in anterior frontal cortex in severe mental illness. Cereb Cortex 2002; 12: 349–356.

    Article  Google Scholar 

  40. Poltorak M, Sadoul R, Keilhauer G, Landa C, Fahrig T, Schachner M . Myelin-associated glycoprotein, a member of the L2/HNK-1 family of neural cell adhesion molecules, is involved in neuron–oligodendrocyte and oligodendrocyte–oligodendrocyte interaction. J Cell Biol 1987; 105: 1893–1899.

    Article  CAS  Google Scholar 

  41. Vincent I, Rosado M, Davies P . Mitotic mechanisms in Alzheimer's disease? J Cell Biol 1996; 132: 413–425.

    Article  CAS  Google Scholar 

  42. Filippi M, Tortorella C, Rovaris M, Bozzali M, Possa F, Sormani P et al. Changes in the normal appearing brain tissue and cognitive impairment in multiple sclerosis. J Neurol Neurosurg Psychiatry 2000; 68: 157–161.

    Article  CAS  Google Scholar 

  43. Fu L, Matthews PM, De Stefano N, Worsley KJ, Narayanan S, Francis GS et al. Imaging axonal damage of normal-appearing white matter in multiple sclerosis. Brain 1998; 121: 103–113.

    Article  Google Scholar 

  44. Demerens C, Stankoff B, Logak M, Anglade P, Allinquant B, Couraud F et al. Induction of myelination in the central nervous system by electrical activity. Proc Nat Acad Sci USA 1996; 93: 9887–9892.

    Article  CAS  Google Scholar 

  45. Cotter D, Mackay D, Chana G, Beasley C, Landau S, Everall IP . Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex 2002; 12: 386–394.

    Article  Google Scholar 

  46. Cotter DR, Pariante CM, Everall IP . Glial cell abnormalities in major psychiatric disorders: the evidence and implications. Brain Res Bull 2001; 55: 585–595.

    Article  CAS  Google Scholar 

  47. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö, L . Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998; 338: 278–285.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

WGH was supported by a Scientist Award from the Canadian Institutes of Health Research. Grant support was provided by CIHR (MT14037), NARSAD and the National Institutes of Mental Health (MT46745, MH40210 and MH60877). Drs Joel Kleinman and Manuel Casanova provided tissue samples. Ms C Chen provided technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W G Honer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flynn, S., Lang, D., Mackay, A. et al. Abnormalities of myelination in schizophrenia detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins. Mol Psychiatry 8, 811–820 (2003). https://doi.org/10.1038/sj.mp.4001337

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001337

Keywords

This article is cited by

Search

Quick links