Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The amyloidogenic potential and behavioral correlates of stress

Abstract

Observations of elevated basal cortisol levels in Alzheimer's disease (AD) patients prompted the hypothesis that stress and glucocorticoids (GC) may contribute to the development and/or maintenance of AD. Consistent with that hypothesis, we show that stress and GC provoke misprocessing of amyloid precursor peptide in the rat hippocampus and prefrontal cortex, resulting in increased levels of the peptide C-terminal fragment 99 (C99), whose further proteolytic cleavage results in the generation of amyloid-β (Aβ). We also show that exogenous Aβ can reproduce the effects of stress and GC on C99 production and that a history of stress strikingly potentiates the C99-inducing effects of Aβ and GC. Previous work has indicated a role for Aβ in disruption of synaptic function and cognitive behaviors, and AD patients reportedly show signs of heightened anxiety. Here, behavioral analysis revealed that like stress and GC, Aβ administration causes spatial memory deficits that are exacerbated by stress and GC; additionally, Aβ, stress and GC induced a state of hyperanxiety. Given that the intrinsic properties of C99 and Aβ include neuroendangerment and behavioral impairment, our findings suggest a causal role for stress and GC in the etiopathogenesis of AD, and demonstrate that stressful life events and GC therapy can have a cumulative impact on the course of AD development and progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Guillozet AL, Weintraub S, Mash DC, Mesulam MM . Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch Neurol 2003; 60: 729–736.

    Article  Google Scholar 

  2. Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ et al. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosc 2005; 8: 79–84.

    Article  CAS  Google Scholar 

  3. Almeida CG, Tampellini D, Takahashi RH, Greengard P, Lin MT, Snyder EM et al. Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses. Neurobiol Dis 2005; 20: 187–198.

    Article  CAS  Google Scholar 

  4. Roselli F, Tirard M, Lu J, Hutzler P, Lamberti P, Livrea P et al. Soluble beta-amyloid1-40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses. J Neurosci 2005; 25: 11061–11070.

    Article  CAS  Google Scholar 

  5. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30: 572–580.

    Article  CAS  Google Scholar 

  6. Olariu A, Tran MH, Yamada K, Mizuno M, Hefco V, Nabeshima T . Memory deficits and increased emotionality induced by β-amyloid (25–35) are correlated with the reduced acetylcholine release and altered phorbol dibutyrate binding in the hippocampus. J Neural Transm 2001; 108: 1065–1079.

    Article  CAS  Google Scholar 

  7. De Strooper B . Nicastrin: gatekeeper of the gamma-secretase complex. Cell 2005; 122: 318–320.

    Article  CAS  Google Scholar 

  8. Bayer TA, Wirths O, Majtenyi K, Hartmann T, Multhaup G, Beyreuther K et al. Key factors in Alzheimer's disease: beta-amyloid precursor protein processing, metabolism and intraneuronal transport. Brain Pathol 2001; 11: 1–11.

    Article  CAS  Google Scholar 

  9. Lorenzo A, Yankner BA . Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci USA 1994; 91: 12243–12247.

    Article  CAS  Google Scholar 

  10. Weldon DT, Rogers SD, Ghilardi JR, Finke MP, Cleary JP, O’Hare E et al. Fibrillar beta-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS in vivo. J Neurosci 1998; 18: 2161–2173.

    Article  CAS  Google Scholar 

  11. Mattson MP . Pathways towards and away from Alzheimer's disease. Nature 2004; 430: 631–639.

    Article  CAS  Google Scholar 

  12. Yankner BA, Dawes LR, Fisher S, Villa-Komaroff L, Oster-Granite ML, Neve RL . Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer's disease. Science 1989; 245: 417–420.

    Article  CAS  Google Scholar 

  13. Oster-Granite ML, McPhie DL, Greenan J, Neve RL . Age-dependent neuronal and synaptic degeneration in mice transgenic for the C terminus of the amyloid precursor protein. J Neurosci 1996; 16: 6732–6741.

    Article  CAS  Google Scholar 

  14. Nalbantoglu J, Tirado-Santiago G, Lahsaini A, Poirier J, Goncalves O, Verge G et al. Impaired learning and LTP in mice expressing the carboxy terminus of the Alzheimer amyloid precursor protein. Nature 1997; 387: 500–505.

    Article  CAS  Google Scholar 

  15. Berger-Sweeney J, McPhie DL, Arters JA, Greenan J, Oster-Granite ML, Neve RL . Impairments in learning and memory accompanied by neurodegeneration in mice transgenic for the carboxyl-terminus of the amyloid precursor protein. Mol Brain Res 1999; 66: 150–162.

    Article  CAS  Google Scholar 

  16. Lorenzo A, Yuan M, Zhang Z, Paganetti PA, Sturchler-Pierrat C, Staufenbiel M et al. Amyloid beta interacts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer's disease. Nat Neurosci 2000; 3: 460–464.

    Article  CAS  Google Scholar 

  17. Heredia L, Lin R, Vigo FS, Kedikian G, Busciglio J, Lorenzo A . Deposition of amyloid fibrils promotes cell-surface accumulation of amyloid beta precursor protein. Neurobiol Dis 2004; 16: 617–629.

    Article  CAS  Google Scholar 

  18. Hartmann A, Veldhuis JD, Deuschle M, Standhardt H, Heuser I . Twenty-four hour cortisol release profiles in patients with Alzheimer's and Parkinson's disease compared to normal controls: ultradian secretory pulsatility and diurnal variation. Neurobiol Aging 1997; 18: 285–289.

    Article  CAS  Google Scholar 

  19. Elgh E, Lindqvist Astot A, Fagerlund M, Eriksson S, Olsson T, Nasman B . Cognitive dysfunction, hippocampal atrophy and glucocorticoid feedback in Alzheimer's disease. Biol Psychiatry 2006; 59: 155–161.

    Article  CAS  Google Scholar 

  20. Green KN, Billings LM, Roozendaal B, McGaugh JL, LaFerla FM . Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer's disease. J Neurosci 2006; 26: 9047–9056.

    Article  CAS  Google Scholar 

  21. Jeong YH, Park CH, Yoo J, Shin KY, Ahn SM, Kim HS et al. Chronic stress accelerates learning and memory impairments and increases amyloid deposition in APPV717I-CT100 transgenic mice, an Alzheimer's disease model. FASEB J 2006; 20: 729–731.

    Article  CAS  Google Scholar 

  22. Lupien SJ, Fiocco A, Wan N, Maheu F, Lord C, Schramek T et al. Stress hormones and human memory function across the lifespan. Psychoneuroendocrinology 2005; 30: 225–242.

    Article  CAS  Google Scholar 

  23. Cerqueira JJ, Pego JM, Taipa R, Bessa JM, Almeida OF, Sousa N . Morphological correlates of corticosteroid-induced changes in prefrontal cortex-dependent behaviors. J Neurosci 2005; 25: 7792–7800.

    Article  CAS  Google Scholar 

  24. Sousa N, Almeida OFX . Corticosteroids: sculptors of the hippocampal formation. Rev Neurosci 2002; 13: 59–84.

    Article  CAS  Google Scholar 

  25. Cerqueira JJ, Taipa R, Almeida OFX, Sousa N . Specific configuration of dendritic degeneration in pyramidal neurons of the medial prefrontal cortex induced by differing corticosteroid regimen. Cereb Cortex 2006; 17: 1998–2006.

    Article  Google Scholar 

  26. Selkoe DJ . Alzheimer's disease: genotypes, phenotypes, and treatments. Science 1997; 275: 630–631.

    Article  CAS  Google Scholar 

  27. Dolan RJ . Emotion, cognition, and behavior. Science 2002; 298: 1191–1194.

    Article  CAS  Google Scholar 

  28. Ochsner KN, Gross JJ . The cognitive control of emotion. Trends Cogn Sci 2005; 9: 242–249.

    Article  Google Scholar 

  29. Phelps EA . Emotion and cognition: insights from studies of the human amygdala. Annu Rev Psychol 2006; 57: 27–53.

    Article  Google Scholar 

  30. Ownby RL, Harwood DG, Barker WW, Duara R . Predictors of anxiety in patients with Alzheimer's disease. Depress Anxiety 2000; 11: 38–42.

    Article  CAS  Google Scholar 

  31. Ownby RL, Crocco E, Acevedo A, John V, Loewenstein D . Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. Arch Gen Psychiatry 2006; 63: 530–538.

    Article  Google Scholar 

  32. Sousa N, Almeida OFX, Holsboer F, Paula-Barbosa MM, Madeira MD . Maintenance of hippocampal cell numbers in young and aged rats submitted to chronic unpredictable stress. Comparison with the effects of corticosterone treatment. Stress 1998; 2: 237–249.

    Article  CAS  Google Scholar 

  33. Paxinos G, Watson C . The Rat Brain in Stereotaxic Coordinates, 4th edn. Academic Press: San Diego, 1998.

    Google Scholar 

  34. Solà C, Mengod G, Probst A, Palacios KM . Differential regional and cellular distribution of â-amyloid precursor RNAs containing and lacking the Kunitz protease inhibitor domain in the brain of human, rat and mouse. Neuroscience 1993; 53: 267–295.

    Article  Google Scholar 

  35. Panegyres PK . The effects of excitotoxicity on the expression of the amyloid precursor protein gene in the brain and its modulation by neuroprotective agents. J Neural Transm 1998; 105: 463–478.

    Article  CAS  Google Scholar 

  36. Ni Y, Zhao X, Bao G, Zou L, Teng L, Wang Z et al. Activation of beta(2)-adrenergic receptor stimulates gamma-secretase activity and accelerates amyloid plaque formation. Nat Med 2007; 12: 1390–1396.

    Article  Google Scholar 

  37. Stephan A, Phillips AG . A case for a non-transgenic animal model of Alzheimer's disease. Genes Brain Behav 2005; 4: 157–172.

    Article  CAS  Google Scholar 

  38. Davis-Salinas J, Saporito-Irwin SM, Cotman CW, Van Nostrand WE . Amyloid beta-protein induces its own production in cultured degenerating cerebrovascular smooth muscle cells. J Neurochem 1995; 65: 931–934.

    Article  CAS  Google Scholar 

  39. Frautschy SA, Yang F, Calderon L, Cole GM . Rodent models of Alzheimer's disease: rat A beta infusion approaches to amyloid deposits. Neurobiol Aging 1996; 17: 311–321.

    Article  CAS  Google Scholar 

  40. Magarinos AM, Verdugo JM, McEwen BS . Chronic stress alters synaptic terminal structure in hippocampus. Proc Natl Acad Sci USA 1997; 94: 14002–14008.

    Article  CAS  Google Scholar 

  41. Lupien SJ, de Leon M, de Santi S, Convit A, Tarshish C, Nair N et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat Neurosci 1998; 1: 69–73.

    Article  CAS  Google Scholar 

  42. Sousa N, Paula-Barbosa MM, Almeida OFX . Ligand and subfield specificity of corticoid-induced neuronal loss in the rat hippocampal formation. Neuroscience 1999; 89: 1079–1087.

    Article  CAS  Google Scholar 

  43. Wellman CL . Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration. J Neurobiol 2001; 49: 245–253.

    Article  CAS  Google Scholar 

  44. Cerqueira JJ, Catania C, Sotiropoulos I, Schubert M, Kalisch R, Almeida OFX et al. Corticosteroid status influences the volume of the rat cingulate cortex—a magnetic resonance imaging study. J Psychiatr Res 2005; 39: 451–460.

    Article  CAS  Google Scholar 

  45. Radley JJ, Morrison JH . Repeated stress and structural plasticity in the brain. Ageing Res Rev 2005; 4: 271–287.

    Article  Google Scholar 

  46. McEwen BS, De Kloet ER, Rostene W . Adrenal steroid receptors and actions in the nervous system. Physiol Rev 1986; 66: 1121–1188.

    Article  CAS  Google Scholar 

  47. Braak H, Braak E . Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 1991; 82: 239–259.

    Article  CAS  Google Scholar 

  48. Islam A, Kalaria RN, Winblad B, Adem A . Enhanced localization of amyloid beta precursor protein in the rat hippocampus following long-term adrenalectomy. Brain Res 1998; 806: 108–112.

    Article  CAS  Google Scholar 

  49. Budas G, Coughlan CM, Seckl JR, Breen KC . The effect of corticosteroids on amyloid beta precursor protein/amyloid precursor-like protein expression and processing in vivo. Neurosci Lett 1999; 276: 61–64.

    Article  CAS  Google Scholar 

  50. Sambamurti K, Kinsey R, Maloney B, Ge YW, Lahiri DK . Gene structure and organization of the human beta-secretase (BACE) promoter. FASEB J 2004; 18: 1034–1036.

    Article  CAS  Google Scholar 

  51. Haass C . Take five—BACE and the gamma-secretase quartet conduct Alzheimer's amyloid beta-peptide generation. EMBO J 2004; 23: 483–488.

    Article  CAS  Google Scholar 

  52. Johnston JA, Liu WW, Todd SA, Coulson DT, Murphy S, Irvine GB et al. Expression and activity of beta-site amyloid precursor protein cleaving enzyme in Alzheimer's disease. Biochem Soc Trans 2005; 33: 1096–1100.

    Article  CAS  Google Scholar 

  53. Li Y, Zhou W, Tong Y, He G, Song W . Control of APP processing and Abeta generation level by BACE1 enzymatic activity and transcription. FASEB J 2006; 20: 285–292.

    Article  Google Scholar 

  54. Yang DS, Tandon A, Chen F, Yu G, Yu H, Arawaka S et al. Mature glycosylation and trafficking of nicastrin modulate its binding to presenilins. J Biol Chem 2002; 277: 28135–28142.

    Article  CAS  Google Scholar 

  55. Herreman A, Van Gassen G, Bentahir M, Nyabi O, Craessaerts K, Mueller U et al. γ-secretase activity requires the presenilin-dependent trafficking of nicastrin through the Golgi apparatus but not its complex glycosylation. J Cell Sci 2003; 116: 1127–1136.

    Article  CAS  Google Scholar 

  56. Shah S, Lee SF, Tabuchi K, Hao YH, Yu C, LaPlant Q et al. Nicastrin functions as a gamma-secretase-substrate receptor. Cell 2005; 122: 435–447.

    Article  CAS  Google Scholar 

  57. Geula C, Wu CK, Saroff D, Lorenzo A, Yuan M, Yankner BA . Aging renders the brain vulnerable to amyloid beta-protein neurotoxicity. Nat Med 1998; 4: 827–831.

    Article  CAS  Google Scholar 

  58. Starkman MN, Giordani B, Berent S, Schork MA, Schteingart DE . Elevated cortisol levels in Cushing's disease are associated with cognitive decrements. Psychosom Med 2001; 63: 985–993.

    Article  CAS  Google Scholar 

  59. Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L et al. Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am J Pathol 1999; 155: 853–862.

    Article  CAS  Google Scholar 

  60. Edison P, Archer HA, Hinz R, Hammers A, Pavese N, Tai YF et al. Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study. Neurology 2007; 68: 501–508.

    Article  CAS  Google Scholar 

  61. McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K et al. Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann Neurol 1999; 46: 860–866.

    Article  CAS  Google Scholar 

  62. Braak H, Braak E . Diagnostic criteria for neuropathologic assessment of Alzheimer's disease. Neurobiol Aging 1997; 18(Suppl 4): S85–S88.

    Article  CAS  Google Scholar 

  63. Swanwick GR, Kirby M, Bruce I, Buggy F, Coen RF, Coakley D et al. Hypothalamic–pituitary–adrenal axis dysfunction in Alzheimer's disease: lack of association between longitudinal and cross-sectional findings. Am J Psychiatry 1998; 155: 286–289.

    Article  CAS  Google Scholar 

  64. Behl C, Lezoualch F, Trapp T, Widmann M, Skutella T, Holsboer F . Glucocorticoids enhance oxidative stress-induced cell death in hippocampal neurons in vitro. Endocrinology 1997; 138: 101–106.

    Article  CAS  Google Scholar 

  65. Sapolsky RM . The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death. Biol Psychiatry 2000; 48: 755–765.

    Article  CAS  Google Scholar 

  66. Grossberg GT . Diagnosis and treatment of Alzheimer's disease. J Clin Psychiatry 2003; 64(Suppl 9): S3–S6.

    Google Scholar 

  67. Tatsch MF, Bottino CM, Azevedo D, Hototian SR, Moscoso MA, Folquitto JC et al. Neuropsychiatric symptoms in Alzheimer disease and cognitively impaired, nondemented elderly from a community-based sample in Brazil: prevalence and relationship with dementia severity. Am J Geriatr Psychiatry 2006; 14: 438–445.

    Article  Google Scholar 

  68. in ‘t Veld BA, Ruitenberg A, Hofman A, Launer LJ, van Duijn CM, Stijnen T et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer's disease. N Engl J Med 2001; 345: 1515–1521.

    Article  Google Scholar 

  69. Aisen PS . The potential of anti-inflammatory drugs for the treatment of Alzheimer's disease. Lancet Neurol 2000; 1: 279–284.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dieter Fischer and Rainer Stoffel for excellent technical assistance, Carola Hetzel for administrative help, and Drs Keiro Shirotani and Ayako Yamamoto for helpful advice. Isabel Matos and Lucilia Pinto are thanked for help with histological preparation and scoring, Dr Sam Gandy for providing the 369 antibody and Dr Alexandre Patchev for help with image preparation. CC and IS were supported by stipends from the Max Planck Society and EU Marie Curie Training Fellowships (at University College London, UK). The collaboration between the German and Portuguese laboratories was supported through the German–Portuguese Luso-Alemas Program (DAAD/GRICES). This study was conducted within the framework of the EU-supported integrated project ‘CRESCENDO’ (Contract FP6-018652).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O F X Almeida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catania, C., Sotiropoulos, I., Silva, R. et al. The amyloidogenic potential and behavioral correlates of stress. Mol Psychiatry 14, 95–105 (2009). https://doi.org/10.1038/sj.mp.4002101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4002101

Keywords

This article is cited by

Search

Quick links