Skip to main content

Advertisement

Log in

Purkinje cell degeneration elevates eupneic and hypercapnic ventilation in rats

  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Previous studies have demonstrated that among cerebellar nuclei, the fastigial nucleus (FN) plays a major role in facilitation of respiration, especially during hypercapnia. Since the FN primarily receives inhibitory afferents from Purkinje cells (PCs), we hypothesized that degeneration of PCs would increase both eupneic and hypercapnic ventilation. Experiments were carried out on 20 animals (n=10 for both normal and PC-degenerated) that were divided into three groups based on the different preparations used, i.e., four pairs for the awake, three pairs for the anesthetized, and three other pairs initially for the awake and subsequently for the anesthetized. The awake normal and PCD rats were separately placed in an unrestrained whole-body plethysmograph and ventilatory parameters measured before (room air) and during hypercapnia (5% CO2 + 21% O2 + 74% N2) for 30 min. The anesthetized animals were exposed to the same level of hypercapnia applied for ∼5 min. The results showed that both eupneic breathing and hypercapnia-induced ventilatory augmentation were significantly greater in the awake PCD rat than those observed in the normal one, primarily due to a remarkable elevation in VT with little changes in f. The same results were also observed in anesthetized preparations. A Fos protein immunocytochemical approach was employed to determine the effect of degeneration on PCs and FN neuronal activity. Fos expression of PCs was very intensive in normal rats, but absent or diminished in PCD rats. In sharp contrast, FN Fos expression was obscure in normal rats, but very apparent in PCD rats. These data suggest that PCs play an inhibitory role in modulation of eupneic and hypercapnic ventilation via inhibiting FN neuronal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Moruzzi G. Paleocerebellar inhibition of vasomotor and respiratory carotid sinus reflexes. Neurophysiology 1940; 3: 20–32.

    Google Scholar 

  2. Glasser RL, Tippett JW, Davidian VA, Jr. Cerebellar activity, apneustic breathing, and the neural control of respiration. Nature 1966; 209: 810–812.

    Article  PubMed  CAS  Google Scholar 

  3. Bradley DJ, Pascoe JP, Paton JF, Spyer KM. Cardiovascular and respiratory responses evoked from the posterior cerebellar cortex and fastigial nucleus in the cat. J Physiol 1987; 393: 107–121.

    PubMed  CAS  Google Scholar 

  4. Decima EE, von Euler C. Intercostal and cerebellar influences on efferent phrenic activity in the decerebrate cat. Acta Physiol Scand 1969; 76: 148–158.

    PubMed  CAS  Google Scholar 

  5. Stella GS, Stella G. Changes in the heart rate from stimulation of the cerebellar cortex in decerebrate dogs. Arch Int Pharmacodyn 1962; CXXXVI: 102.

    Google Scholar 

  6. Lutherer LO, Everse SJ, Lutherer BC. Respiratory response to carbon dioxide in cats decreased by acute lesions of the fastigial nucleus (FN). FASEB 1990; A511.

  7. Xu F, Frazier DT. Modulation of respiratory motor output by cerebellar deep nuclei in the rat. J Appl Physiol 2000; 89: 996–1004.

    PubMed  CAS  Google Scholar 

  8. Lutherer LO, Williams JL, Everse SJ. Neurons of the rostral fastigial nucleus are responsive to cardiovascular and respiratory challenges. J Auton Nerv Syst 1989; 27: 101–111.

    Article  PubMed  CAS  Google Scholar 

  9. Xu F, Frazier DT. Respiratory-related neurons of the fastigial nucleus in response to chemical and mechanical challenges. J Appl Physiol 1997; 82: 1177–1184.

    PubMed  CAS  Google Scholar 

  10. Xu F, Zhang Z, Frazier DT. Microinjection of acetazolamide into the fastigial nucleus augments respiratory output in the rat. J Appl Physiol 2001; 91: 2342–2350.

    PubMed  CAS  Google Scholar 

  11. Xu F, Zhou T, Gibson T, Frazier DT. Fastigial nucleus-mediated respiratory responses depend on the medullary gigantocellular nucleus. J Appl Physiol 2001; 91: 1713–1722.

    PubMed  CAS  Google Scholar 

  12. Ito M. The Cerebellum and Neural Control. New York: Raven Press, 1984.

    Google Scholar 

  13. Matsushita M, Iwahori N. Structural organization of the interpositus and the dentate nuclei. Brain Res 1971; 35: 17–36.

    Article  PubMed  CAS  Google Scholar 

  14. Tolbert DL, Ewald M, Gutting J, La Regina MC. Spatial and temporal pattern of Purkinje cell degeneration in shaker mutant rats with hereditary cerebellar ataxia. J Comp Neurol 1995; 355: 490–507.

    Article  PubMed  CAS  Google Scholar 

  15. Wolf LW, LaRegina MC, Tolbert DL. A behavioral study of the development of hereditary cerebellar ataxia in the shaker rat mutant. Behav Brain Res 1996; 75: 67–81.

    Article  PubMed  CAS  Google Scholar 

  16. Huang Q, Zhou D, St John WM. Vestibular and cerebellar modulation of expiratory motor activities in the cat. J Physiol 1991; 436: 385–404.

    PubMed  CAS  Google Scholar 

  17. Senapati JM, Jain SK, Parida B, Panda A, Fahim M. The influence of cerebellum on carbon dioxide responses in the dog. Jpn J Physiol 1990; 40: 471–478.

    Article  PubMed  CAS  Google Scholar 

  18. Speck DF, Webber CL, Jr. Cerebellar influence on the termination of inspiration by intercostal nerve stimulation. Respir Physiol 1982; 47: 231–238.

    Article  PubMed  CAS  Google Scholar 

  19. Xu F, Frazier DT, Zhang Z, Baekey DM, Shannon R. Cerebellar modulation of cough motor pattern in cats. J Appl Physiol 1997; 83: 391–397.

    PubMed  CAS  Google Scholar 

  20. Xu F, Owen J, Frazier DT. Cerebellar modulation of ventilatory response to progressive hypercapnia. J Appl Physiol 1994; 77: 1073–1080.

    PubMed  CAS  Google Scholar 

  21. Ebert D, Hefter H, Dohle C, Freund HJ. Ataxic breathing during alternating forearm movements of various frequencies in cerebellar patients. Neurosci Lett 1995; 193: 145–148.

    Article  PubMed  CAS  Google Scholar 

  22. Zhuang J, Xu F, Frazier DT. The fastigial nucleus and adjacent areas contain neurons sensitive to acidic stimulation. Society for Neurosciences, San Diego, 2002. Program #569.561.

    Google Scholar 

  23. Wang W, Pizzonia JH, Richerson GB. Chemosensitivity of rat medullary raphe neurones in primary tissue culture. J Physiol 1998; 511(Pt2): 433–450.

    Article  PubMed  CAS  Google Scholar 

  24. Messier ML, Li A, Nattie EE. Muscimol inhibition of medullary raphe neurons decreases the CO2 response and alters sleep in newborn piglets. Respir Physiol Neurobiol 2002; 133: 197–214.

    Article  PubMed  CAS  Google Scholar 

  25. Henderson LA, Macey PM, Macey KE, Frysinger RC, Woo MA, Harper RK, Alger JR, Yan-Go FL, Harper RM. Brain responses associated with the Valsalva maneuver revealed by functional magnetic resonance imaging. J Neurophysiol 2002; 88: 3477–3486.

    Article  PubMed  Google Scholar 

  26. Dobbins EG, Feldman JL. Brainstem network controlling descending drive to phrenic motoneurons in rat. J Comp Neurol 1994; 347: 64–86.

    Article  PubMed  CAS  Google Scholar 

  27. Feldman JL, McCrimmon DR. Neural control of breathing. In: Squire LR, Bloom FE, McConnell SK, Roberts JL, Spitzer NC, Zigmond MJ, editors. Fundamental Neuroscience, 2nd edn. San Diego: Academic Press, 2003: 967–990.

    Google Scholar 

  28. Xu F, Frazier DT. Medullary respiratory neuronal activity modulated by stimulation of the fastigial nucleus of the cerebellum. Brain Res 1995; 705: 53–64.

    Article  PubMed  CAS  Google Scholar 

  29. Gonzalez de Dios J, Garcia-Alix A, Cabanas F, Quero J, Moya M. [Cerebellar hypoplasia in the newborn: association with respiratory control disorders and mental retardation]. Rev Neurol 1995; 23: 1041–1046.

    Google Scholar 

  30. Macey PM, Henderson LA, Macey KE, et al. Connections between respiratory regulation and paradoxical sleep in a patient with Joubert’s syndrome. Klin Padiatr 1979; 191: 83–90.

    Google Scholar 

  31. Sener RN. MR imaging of Joubert’s syndrome. Comput Med Imaging Graph 1995; 19: 481–486.

    Article  PubMed  CAS  Google Scholar 

  32. Gozal D, Harper RM. Novel insights into congenital hypoventilation syndrome. Curr Opin Pulm Med 1999; 5: 335–338.

    Article  PubMed  CAS  Google Scholar 

  33. Cruz-Sanchez FF, Lucena J, Ascaso C, Tolosa E, Quinto L, Rossi ML. Cerebellar cortex delayed maturation in sudden infant death syndrome. J Neuropathol Exp Neurol 1997; 56: 340–346.

    Article  PubMed  CAS  Google Scholar 

  34. Macey PM, Henderson LA, Macey KE, Alger JR, Frysinger RC, Woo MA, Harper RK, Yan-Go FL, Harper RM. Brain morphology associated with obstructive sleep apnea. Am J Respir Crit Care Med 2002; 166: 1382–1387.

    Article  PubMed  Google Scholar 

  35. Waters KA, Forbes P, Morielli A, Hum C, O’Gorman AM, Vernet O, Davis GM, Tewfik TL, Ducharme FM, Brouillette RT. Sleepdisordered breathing in children with myelomeningocele. J Pediatr 1998; 132: 672–681.

    Article  PubMed  CAS  Google Scholar 

  36. Xu F, Zhuang J, Gibson T, Frazier DT. Activation of NMDA receptors in the fastigial (FN) and vestibular nuclei facilitates respiratory output in rats. Society for Neurosciences, San Diego, 2002. Program #174.174.

    Google Scholar 

  37. Shintani T, Anker AR, Billig I, Card JP, Yates BJ. Transneuronal tracing of neural pathways influencing both diaphragm and genioglossal muscle activity in the ferret. J Appl Physiol 2003; 95: 1453–1459.

    PubMed  CAS  Google Scholar 

  38. Vzaimnykh O, Iader S, Frazier DT. Reciprocal connections of respiratory center nuclei. Biull Eksp Biol Med 1980; 90: 652–654.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, F., Zhou, T. & Frazier, D.T. Purkinje cell degeneration elevates eupneic and hypercapnic ventilation in rats. Cerebellum 3, 133–140 (2004). https://doi.org/10.1080/14734220310023332

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220310023332

Keywords

Navigation